3,375 research outputs found

    Measuring measurement--disturbance relationships with weak values

    Full text link
    Using formal definitions for measurement precision {\epsilon} and disturbance (measurement backaction) {\eta}, Ozawa [Phys. Rev. A 67, 042105 (2003)] has shown that Heisenberg's claimed relation between these quantities is false in general. Here we show that the quantities introduced by Ozawa can be determined experimentally, using no prior knowledge of the measurement under investigation --- both quantities correspond to the root-mean-squared difference given by a weak-valued probability distribution. We propose a simple three-qubit experiment which would illustrate the failure of Heisenberg's measurement--disturbance relation, and the validity of an alternative relation proposed by Ozawa

    On quantum error-correction by classical feedback in discrete time

    Full text link
    We consider the problem of correcting the errors incurred from sending quantum information through a noisy quantum environment by using classical information obtained from a measurement on the environment. For discrete time Markovian evolutions, in the case of fixed measurement on the environment, we give criteria for quantum information to be perfectly corrigible and characterize the related feedback. Then we analyze the case when perfect correction is not possible and, in the qubit case, we find optimal feedback maximizing the channel fidelity.Comment: 11 pages, 1 figure, revtex

    Adiabatic Elimination in Compound Quantum Systems with Feedback

    Get PDF
    Feedback in compound quantum systems is effected by using the output from one sub-system (``the system'') to control the evolution of a second sub-system (``the ancilla'') which is reversibly coupled to the system. In the limit where the ancilla responds to fluctuations on a much shorter time scale than does the system, we show that it can be adiabatically eliminated, yielding a master equation for the system alone. This is very significant as it decreases the necessary basis size for numerical simulation and allows the effect of the ancilla to be understood more easily. We consider two types of ancilla: a two-level ancilla (e.g. a two-level atom) and an infinite-level ancilla (e.g. an optical mode). For each, we consider two forms of feedback: coherent (for which a quantum mechanical description of the feedback loop is required) and incoherent (for which a classical description is sufficient). We test the master equations we obtain using numerical simulation of the full dynamics of the compound system. For the system (a parametric oscillator) and feedback (intensity-dependent detuning) we choose, good agreement is found in the limit of heavy damping of the ancilla. We discuss the relation of our work to previous work on feedback in compound quantum systems, and also to previous work on adiabatic elimination in general.Comment: 18 pages, 12 figures including two subplots as jpeg attachment

    Quantum phenomena modelled by interactions between many classical worlds

    Full text link
    We investigate whether quantum theory can be understood as the continuum limit of a mechanical theory, in which there is a huge, but finite, number of classical 'worlds', and quantum effects arise solely from a universal interaction between these worlds, without reference to any wave function. Here a `world' means an entire universe with well-defined properties, determined by the classical configuration of its particles and fields. In our approach each world evolves deterministically; probabilities arise due to ignorance as to which world a given observer occupies; and we argue that in the limit of infinitely many worlds the wave function can be recovered (as a secondary object) from the motion of these worlds. We introduce a simple model of such a 'many interacting worlds' approach and show that it can reproduce some generic quantum phenomena---such as Ehrenfest's theorem, wavepacket spreading, barrier tunneling and zero point energy---as a direct consequence of mutual repulsion between worlds. Finally, we perform numerical simulations using our approach. We demonstrate, first, that it can be used to calculate quantum ground states, and second, that it is capable of reproducing, at least qualitatively, the double-slit interference phenomenon.Comment: Published version (including further discussion of interpretation and quantum limit

    State and dynamical parameter estimation for open quantum systems

    Full text link
    Following the evolution of an open quantum system requires full knowledge of its dynamics. In this paper we consider open quantum systems for which the Hamiltonian is ``uncertain''. In particular, we treat in detail a simple system similar to that considered by Mabuchi [Quant. Semiclass. Opt. 8, 1103 (1996)]: a radiatively damped atom driven by an unknown Rabi frequency Ω\Omega (as would occur for an atom at an unknown point in a standing light wave). By measuring the environment of the system, knowledge about the system state, and about the uncertain dynamical parameter, can be acquired. We find that these two sorts of knowledge acquisition (quantified by the posterior distribution for Ω\Omega, and the conditional purity of the system, respectively) are quite distinct processes, which are not strongly correlated. Also, the quality and quantity of knowledge gain depend strongly on the type of monitoring scheme. We compare five different detection schemes (direct, adaptive, homodyne of the xx quadrature, homodyne of the yy quadrature, and heterodyne) using four different measures of the knowledge gain (Shannon information about Ω\Omega, variance in Ω\Omega, long-time system purity, and short-time system purity).Comment: 14 pages, 18 figure

    Inequivalence of pure state ensembles for open quantum systems: the preferred ensembles are those that are physically realizable

    Full text link
    An open quantum system in steady state ρ^ss\hat\rho_{ss} can be represented by a weighted ensemble of pure states ρ^ss=kkψkψk\hat\rho_{ss}=\sum_{k}\wp_{k}\ket{\psi_k} \bra{\psi_k} in infinitely many ways. A physically realizable (PR) ensemble is one for which some continuous measurement of the environment will collapse the system into a pure state ψ(t)\ket{\psi(t)}, stochastically evolving such that the proportion of time for which ψ(t)=ψk\ket{\psi(t)} = \ket{\psi_{k}} equals k\wp_{k}. Some, but not all, ensembles are PR. This constitutes the preferred ensemble fact, with the PR ensembles being the preferred ensembles. We present the necessary and sufficient conditions for a given ensemble to be PR, and illustrate the method by showing that the coherent state ensemble is not PR for an atom laser.Comment: 5 pages, no figure

    Non-Markovian Open Quantum Systems: Input-Output Fields, Memory, Monitoring

    Full text link
    Principles of monitoring non-Markovian open quantum systems are analyzed. We use the field representation of the environment (Gardiner and Collet, 1985) for the separation of its memory and detector part, respectively. We claim the system-plus-memory compound becomes Markovian, the detector part is tractable by standard Markovian monitoring. Because of non-Markovianity, only the mixed state of the system can be predicted, the pure state of the system can be retrodicted. We present the corresponding non-Markovian stochastic Schr\"odinger equation.Comment: 5 pages, 3 postscript figures; version with brief important improvement

    On the dynamics of initially correlated open quantum systems: theory and applications

    Full text link
    We show that the dynamics of any open quantum system that is initially correlated with its environment can be described by a set of (or less) completely positive maps, where d is the dimension of the system. Only one such map is required for the special case of no initial correlations. The same maps describe the dynamics of any system-environment state obtained from the initial state by a local operation on the system. The reduction of the system dynamics to a set of completely positive maps allows known numerical and analytic tools for uncorrelated initial states to be applied to the general case of initially correlated states, which we exemplify by solving the qubit dephasing model for such states, and provides a natural approach to quantum Markovianity for this case. We show that this set of completely positive maps can be experimentally characterised using only local operations on the system, via a generalisation of noise spectroscopy protocols. As further applications, we first consider the problem of retrodicting the dynamics of an open quantum system which is in an arbitrary state when it becomes accessible to the experimenter, and explore the conditions under which retrodiction is possible. We also introduce a related one-sided or limited-access tomography protocol for determining an arbitrary bipartite state, evolving under a sufficiently rich Hamiltonian, via local operations and measurements on just one component. We simulate this protocol for a physical model of particular relevance to nitrogen-vacancy centres, and in particular show how to reconstruct the density matrix of a set of three qubits, interacting via dipolar coupling and in the presence of local magnetic fields, by measuring and controlling only one of them.Comment: 19 pages. Comments welcom

    Pooling quantum states obtained by indirect measurements

    Full text link
    We consider the pooling of quantum states when Alice and Bob both have one part of a tripartite system and, on the basis of measurements on their respective parts, each infers a quantum state for the third part S. We denote the conditioned states which Alice and Bob assign to S by alpha and beta respectively, while the unconditioned state of S is rho. The state assigned by an overseer, who has all the data available to Alice and Bob, is omega. The pooler is told only alpha, beta, and rho. We show that for certain classes of tripartite states, this information is enough for her to reconstruct omega by the formula omega \propto alpha rho^{-1} beta. Specifically, we identify two classes of states for which this pooling formula works: (i) all pure states for which the rank of rho is equal to the product of the ranks of the states of Alice's and Bob's subsystems; (ii) all mixtures of tripartite product states that are mutually orthogonal on S.Comment: Corrected a mistake regarding the scope of our original result. This version to be published in Phys. Rev. A. 6 pages, 1 figur

    Adaptive single-shot phase measurements: The full quantum theory

    Full text link
    The phase of a single-mode field can be measured in a single-shot measurement by interfering the field with an effectively classical local oscillator of known phase. The standard technique is to have the local oscillator detuned from the system (heterodyne detection) so that it is sometimes in phase and sometimes in quadrature with the system over the course of the measurement. This enables both quadratures of the system to be measured, from which the phase can be estimated. One of us [H.M. Wiseman, Phys. Rev. Lett. 75, 4587 (1995)] has shown recently that it is possible to make a much better estimate of the phase by using an adaptive technique in which a resonant local oscillator has its phase adjusted by a feedback loop during the single-shot measurement. In Ref.~[H.M. Wiseman and R.B. Killip, Phys. Rev. A 56, 944] we presented a semiclassical analysis of a particular adaptive scheme, which yielded asymptotic results for the phase variance of strong fields. In this paper we present an exact quantum mechanical treatment. This is necessary for calculating the phase variance for fields with small photon numbers, and also for considering figures of merit other than the phase variance. Our results show that an adaptive scheme is always superior to heterodyne detection as far as the variance is concerned. However the tails of the probability distribution are surprisingly high for this adaptive measurement, so that it does not always result in a smaller probability of error in phase-based optical communication.Comment: 17 pages, LaTeX, 8 figures (concatenated), Submitted to Phys. Rev.
    corecore