2,807 research outputs found
Reconsidering Rapid Qubit Purification by Feedback
This paper reconsiders the claimed rapidity of a scheme for the purification
of the quantum state of a qubit, proposed recently in Jacobs 2003 Phys. Rev.
A67 030301(R). The qubit starts in a completely mixed state, and information is
obtained by a continuous measurement. Jacobs' rapid purification protocol uses
Hamiltonian feedback control to maximise the average purity of the qubit for a
given time, with a factor of two increase in the purification rate over the
no-feedback protocol. However, by re-examining the latter approach, we show
that it mininises the average time taken for a qubit to reach a given purity.
In fact, the average time taken for the no-feedback protocol beats that for
Jacobs' protocol by a factor of two. We discuss how this is compatible with
Jacobs' result, and the usefulness of the different approaches.Comment: 11 pages, 3 figures. Final version, accepted for publication in New
J. Phy
Adiabatic Elimination in Compound Quantum Systems with Feedback
Feedback in compound quantum systems is effected by using the output from one
sub-system (``the system'') to control the evolution of a second sub-system
(``the ancilla'') which is reversibly coupled to the system. In the limit where
the ancilla responds to fluctuations on a much shorter time scale than does the
system, we show that it can be adiabatically eliminated, yielding a master
equation for the system alone. This is very significant as it decreases the
necessary basis size for numerical simulation and allows the effect of the
ancilla to be understood more easily. We consider two types of ancilla: a
two-level ancilla (e.g. a two-level atom) and an infinite-level ancilla (e.g.
an optical mode). For each, we consider two forms of feedback: coherent (for
which a quantum mechanical description of the feedback loop is required) and
incoherent (for which a classical description is sufficient). We test the
master equations we obtain using numerical simulation of the full dynamics of
the compound system. For the system (a parametric oscillator) and feedback
(intensity-dependent detuning) we choose, good agreement is found in the limit
of heavy damping of the ancilla. We discuss the relation of our work to
previous work on feedback in compound quantum systems, and also to previous
work on adiabatic elimination in general.Comment: 18 pages, 12 figures including two subplots as jpeg attachment
Measuring measurement--disturbance relationships with weak values
Using formal definitions for measurement precision {\epsilon} and disturbance
(measurement backaction) {\eta}, Ozawa [Phys. Rev. A 67, 042105 (2003)] has
shown that Heisenberg's claimed relation between these quantities is false in
general. Here we show that the quantities introduced by Ozawa can be determined
experimentally, using no prior knowledge of the measurement under investigation
--- both quantities correspond to the root-mean-squared difference given by a
weak-valued probability distribution. We propose a simple three-qubit
experiment which would illustrate the failure of Heisenberg's
measurement--disturbance relation, and the validity of an alternative relation
proposed by Ozawa
State and dynamical parameter estimation for open quantum systems
Following the evolution of an open quantum system requires full knowledge of
its dynamics. In this paper we consider open quantum systems for which the
Hamiltonian is ``uncertain''. In particular, we treat in detail a simple system
similar to that considered by Mabuchi [Quant. Semiclass. Opt. 8, 1103 (1996)]:
a radiatively damped atom driven by an unknown Rabi frequency (as
would occur for an atom at an unknown point in a standing light wave). By
measuring the environment of the system, knowledge about the system state, and
about the uncertain dynamical parameter, can be acquired. We find that these
two sorts of knowledge acquisition (quantified by the posterior distribution
for , and the conditional purity of the system, respectively) are quite
distinct processes, which are not strongly correlated. Also, the quality and
quantity of knowledge gain depend strongly on the type of monitoring scheme. We
compare five different detection schemes (direct, adaptive, homodyne of the
quadrature, homodyne of the quadrature, and heterodyne) using four
different measures of the knowledge gain (Shannon information about ,
variance in , long-time system purity, and short-time system purity).Comment: 14 pages, 18 figure
Inequivalence of pure state ensembles for open quantum systems: the preferred ensembles are those that are physically realizable
An open quantum system in steady state can be represented by
a weighted ensemble of pure states in infinitely many ways. A physically realizable (PR) ensemble is
one for which some continuous measurement of the environment will collapse the
system into a pure state , stochastically evolving such that the
proportion of time for which equals .
Some, but not all, ensembles are PR. This constitutes the preferred ensemble
fact, with the PR ensembles being the preferred ensembles. We present the
necessary and sufficient conditions for a given ensemble to be PR, and
illustrate the method by showing that the coherent state ensemble is not PR for
an atom laser.Comment: 5 pages, no figure
In-loop squeezing is real squeezing to an in-loop atom
Electro-optical feedback can produce an in-loop photocurrent with arbitrarily
low noise. This is not regarded as evidence of `real' squeezing because
squeezed light cannot be extracted from the loop using a linear beam splitter.
Here I show that illuminating an atom (which is a nonlinear optical element)
with `in-loop' squeezed light causes line-narrowing of one quadrature of the
atom's fluorescence. This has long been regarded as an effect which can only be
produced by squeezing. Experiments on atoms using in-loop squeezing should be
much easier than those with conventional sources of squeezed light.Comment: 4 pages, 2 figures, submitted to PR
Retroactive quantum jumps in a strongly-coupled atom-field system
We investigate a novel type of conditional dynamic that occurs in the
strongly-driven Jaynes-Cummings model with dissipation. Extending the work of
Alsing and Carmichael [Quantum Opt. {\bf 3}, 13 (1991)], we present a combined
numerical and analytic study of the Stochastic Master Equation that describes
the system's conditional evolution when the cavity output is continuously
observed via homodyne detection, but atomic spontaneous emission is not
monitored at all. We find that quantum jumps of the atomic state are induced by
its dynamical coupling to the optical field, in order retroactively to justify
atypical fluctuations in ocurring in the homodyne photocurrent.Comment: 4 pages, uses RevTex, 5 EPS figure
Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback
We propose a simple optomechanical model in which a mechanical oscillator
quadrature could be "cooled" well below its equilibrium temperature by applying
a suitable feedback to drive the orthogonal quadrature by means of the homodyne
current of the radiation field used to probe its position.Comment: 9 pages, RevTeX, Figures available from authors, to appear in Phys.
Rev. Let
Capture and release of a conditional state of a cavity QED system by quantum feedback
Detection of a single photon escaping an optical cavity QED system prepares a nonclassical state of the electromagnetic field. The evolution of the state can be modified by changing the drive of the cavity. For the appropriate feedback, the conditional state can be captured (stabilized) and then released. This is observed by a conditional intensity measurement that shows suppression of vacuum Rabi oscillations for the length of the feedback pulse and their subsequent return
- …