3,807 research outputs found

    Measuring measurement--disturbance relationships with weak values

    Full text link
    Using formal definitions for measurement precision {\epsilon} and disturbance (measurement backaction) {\eta}, Ozawa [Phys. Rev. A 67, 042105 (2003)] has shown that Heisenberg's claimed relation between these quantities is false in general. Here we show that the quantities introduced by Ozawa can be determined experimentally, using no prior knowledge of the measurement under investigation --- both quantities correspond to the root-mean-squared difference given by a weak-valued probability distribution. We propose a simple three-qubit experiment which would illustrate the failure of Heisenberg's measurement--disturbance relation, and the validity of an alternative relation proposed by Ozawa

    Adiabatic Elimination in Compound Quantum Systems with Feedback

    Get PDF
    Feedback in compound quantum systems is effected by using the output from one sub-system (``the system'') to control the evolution of a second sub-system (``the ancilla'') which is reversibly coupled to the system. In the limit where the ancilla responds to fluctuations on a much shorter time scale than does the system, we show that it can be adiabatically eliminated, yielding a master equation for the system alone. This is very significant as it decreases the necessary basis size for numerical simulation and allows the effect of the ancilla to be understood more easily. We consider two types of ancilla: a two-level ancilla (e.g. a two-level atom) and an infinite-level ancilla (e.g. an optical mode). For each, we consider two forms of feedback: coherent (for which a quantum mechanical description of the feedback loop is required) and incoherent (for which a classical description is sufficient). We test the master equations we obtain using numerical simulation of the full dynamics of the compound system. For the system (a parametric oscillator) and feedback (intensity-dependent detuning) we choose, good agreement is found in the limit of heavy damping of the ancilla. We discuss the relation of our work to previous work on feedback in compound quantum systems, and also to previous work on adiabatic elimination in general.Comment: 18 pages, 12 figures including two subplots as jpeg attachment

    Brane-World Black Hole Solutions via a Confining Potential

    Full text link
    Using a confining potential, we consider spherically symmetric vacuum (static black hole) solutions in a brane-world scenario. Working with a constant curvature bulk, two interesting cases/solutions are studied. A Schwarzschild-de Sitter black hole solution similar to the standard solution in the presence of a cosmological constant is obtained which confirms the idea that an extra term in the field equations on the brane can play the role of a positive cosmological constant and may be used to account for the accelerated expansion of the universe. The other solution is one in which we can have a proper potential to explain the galaxy rotation curves without assuming the existence of dark matter and without working with new modified theories (modified Newtonian dynamics).Comment: 12 pages, to appear in PR

    From Black Strings to Black Holes

    Get PDF
    Using recently developed numerical methods, we examine neutral compactified non-uniform black strings which connect to the Gregory-Laflamme critical point. By studying the geometry of the horizon we give evidence that this branch of solutions may connect to the black hole solutions, as conjectured by Kol. We find the geometry of the topology changing solution is likely to be nakedly singular at the point where the horizon radius is zero. We show that these solutions can all be expressed in the coordinate system discussed by Harmark and Obers.Comment: 6 pages, 5 figures, RevTe

    Static Axisymmetric Vacuum Solutions and Non-Uniform Black Strings

    Get PDF
    We describe new numerical methods to solve the static axisymmetric vacuum Einstein equations in more than four dimensions. As an illustration, we study the compactified non-uniform black string phase connected to the uniform strings at the Gregory-Laflamme critical point. We compute solutions with a ratio of maximum to minimum horizon radius up to nine. For a fixed compactification radius, the mass of these solutions is larger than the mass of the classically unstable uniform strings. Thus they cannot be the end state of the instability.Comment: 48 pages, 13 colour figures; v2: references correcte

    Multiple-copy state discrimination: Thinking globally, acting locally

    Full text link
    We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies NN, and in the asymptotic limit as NN \rightarrow \infty. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements, and globally optimal adaptive local measurements. Here, adaptive measurements are those for which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite NN) and scaling of this error in the asymptotic limit. In the asymptotic limit, adaptive schemes have no advantage over the optimal fixed local scheme, and except for states with less than 2% mixture, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme. For finite NN, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme, for any degree of mixture.Comment: 11 pages, 14 figure

    State and dynamical parameter estimation for open quantum systems

    Full text link
    Following the evolution of an open quantum system requires full knowledge of its dynamics. In this paper we consider open quantum systems for which the Hamiltonian is ``uncertain''. In particular, we treat in detail a simple system similar to that considered by Mabuchi [Quant. Semiclass. Opt. 8, 1103 (1996)]: a radiatively damped atom driven by an unknown Rabi frequency Ω\Omega (as would occur for an atom at an unknown point in a standing light wave). By measuring the environment of the system, knowledge about the system state, and about the uncertain dynamical parameter, can be acquired. We find that these two sorts of knowledge acquisition (quantified by the posterior distribution for Ω\Omega, and the conditional purity of the system, respectively) are quite distinct processes, which are not strongly correlated. Also, the quality and quantity of knowledge gain depend strongly on the type of monitoring scheme. We compare five different detection schemes (direct, adaptive, homodyne of the xx quadrature, homodyne of the yy quadrature, and heterodyne) using four different measures of the knowledge gain (Shannon information about Ω\Omega, variance in Ω\Omega, long-time system purity, and short-time system purity).Comment: 14 pages, 18 figure

    Atom laser coherence and its control via feedback

    Full text link
    We present a quantum-mechanical treatment of the coherence properties of a single-mode atom laser. Specifically, we focus on the quantum phase noise of the atomic field as expressed by the first-order coherence function, for which we derive analytical expressions in various regimes. The decay of this function is characterized by the coherence time, or its reciprocal, the linewidth. A crucial contributor to the linewidth is the collisional interaction of the atoms. We find four distinct regimes for the linewidth with increasing interaction strength. These range from the standard laser linewidth, through quadratic and linear regimes, to another constant regime due to quantum revivals of the coherence function. The laser output is only coherent (Bose degenerate) up to the linear regime. However, we show that application of a quantum nondemolition measurement and feedback scheme will increase, by many orders of magnitude, the range of interaction strengths for which it remains coherent.Comment: 15 pages, 6 figures, revtex

    Using weak values to experimentally determine "negative probabilities" in a two-photon state with Bell correlations

    Full text link
    Bipartite quantum entangled systems can exhibit measurement correlations that violate Bell inequalities, revealing the profoundly counter-intuitive nature of the physical universe. These correlations reflect the impossibility of constructing a joint probability distribution for all values of all the different properties observed in Bell inequality tests. Physically, the impossibility of measuring such a distribution experimentally, as a set of relative frequencies, is due to the quantum back-action of projective measurements. Weakly coupling to a quantum probe, however, produces minimal back-action, and so enables a weak measurement of the projector of one observable, followed by a projective measurement of a non-commuting observable. By this technique it is possible to empirically measure weak-valued probabilities for all of the values of the observables relevant to a Bell test. The marginals of this joint distribution, which we experimentally determine, reproduces all of the observable quantum statistics including a violation of the Bell inequality, which we independently measure. This is possible because our distribution, like the weak values for projectors on which it is built, is not constrained to the interval [0, 1]. It was first pointed out by Feynman that, for explaining singlet-state correlations within "a [local] hidden variable view of nature ... everything works fine if we permit negative probabilities". However, there are infinitely many such theories. Our method, involving "weak-valued probabilities", singles out a unique set of probabilities, and moreover does so empirically.Comment: 9 pages, 3 figure

    Adaptive single-shot phase measurements: The full quantum theory

    Full text link
    The phase of a single-mode field can be measured in a single-shot measurement by interfering the field with an effectively classical local oscillator of known phase. The standard technique is to have the local oscillator detuned from the system (heterodyne detection) so that it is sometimes in phase and sometimes in quadrature with the system over the course of the measurement. This enables both quadratures of the system to be measured, from which the phase can be estimated. One of us [H.M. Wiseman, Phys. Rev. Lett. 75, 4587 (1995)] has shown recently that it is possible to make a much better estimate of the phase by using an adaptive technique in which a resonant local oscillator has its phase adjusted by a feedback loop during the single-shot measurement. In Ref.~[H.M. Wiseman and R.B. Killip, Phys. Rev. A 56, 944] we presented a semiclassical analysis of a particular adaptive scheme, which yielded asymptotic results for the phase variance of strong fields. In this paper we present an exact quantum mechanical treatment. This is necessary for calculating the phase variance for fields with small photon numbers, and also for considering figures of merit other than the phase variance. Our results show that an adaptive scheme is always superior to heterodyne detection as far as the variance is concerned. However the tails of the probability distribution are surprisingly high for this adaptive measurement, so that it does not always result in a smaller probability of error in phase-based optical communication.Comment: 17 pages, LaTeX, 8 figures (concatenated), Submitted to Phys. Rev.
    corecore