4,150 research outputs found
The pointer basis and the feedback stabilization of quantum systems
The dynamics for an open quantum system can be `unravelled' in infinitely
many ways, depending on how the environment is monitored, yielding different
sorts of conditioned states, evolving stochastically. In the case of ideal
monitoring these states are pure, and the set of states for a given monitoring
forms a basis (which is overcomplete in general) for the system. It has been
argued elsewhere [D. Atkins et al., Europhys. Lett. 69, 163 (2005)] that the
`pointer basis' as introduced by Zurek and Paz [Phys. Rev. Lett 70,
1187(1993)], should be identified with the unravelling-induced basis which
decoheres most slowly. Here we show the applicability of this concept of
pointer basis to the problem of state stabilization for quantum systems. In
particular we prove that for linear Gaussian quantum systems, if the feedback
control is assumed to be strong compared to the decoherence of the pointer
basis, then the system can be stabilized in one of the pointer basis states
with a fidelity close to one (the infidelity varies inversely with the control
strength). Moreover, if the aim of the feedback is to maximize the fidelity of
the unconditioned system state with a pure state that is one of its conditioned
states, then the optimal unravelling for stabilizing the system in this way is
that which induces the pointer basis for the conditioned states. We illustrate
these results with a model system: quantum Brownian motion. We show that even
if the feedback control strength is comparable to the decoherence, the optimal
unravelling still induces a basis very close to the pointer basis. However if
the feedback control is weak compared to the decoherence, this is not the case
Measuring measurement--disturbance relationships with weak values
Using formal definitions for measurement precision {\epsilon} and disturbance
(measurement backaction) {\eta}, Ozawa [Phys. Rev. A 67, 042105 (2003)] has
shown that Heisenberg's claimed relation between these quantities is false in
general. Here we show that the quantities introduced by Ozawa can be determined
experimentally, using no prior knowledge of the measurement under investigation
--- both quantities correspond to the root-mean-squared difference given by a
weak-valued probability distribution. We propose a simple three-qubit
experiment which would illustrate the failure of Heisenberg's
measurement--disturbance relation, and the validity of an alternative relation
proposed by Ozawa
Atom Lasers, Coherent States, and Coherence:II. Maximally Robust Ensembles of Pure States
As discussed in Wiseman and Vaccaro [quant-ph/9906125], the stationary state
of an optical or atom laser far above threshold is a mixture of coherent field
states with random phase, or, equivalently, a Poissonian mixture of number
states. We are interested in which, if either, of these descriptions of
, is more natural. In the preceding paper we concentrated upon
whether descriptions such as these are physically realizable (PR). In this
paper we investigate another relevant aspect of these ensembles, their
robustness. A robust ensemble is one for which the pure states that comprise it
survive relatively unchanged for a long time under the system evolution. We
determine numerically the most robust ensembles as a function of the parameters
in the laser model: the self-energy of the bosons in the laser mode, and
the excess phase noise . We find that these most robust ensembles are PR
ensembles, or similar to PR ensembles, for all values of these parameters. In
the ideal laser limit (), the most robust states are coherent
states. As the phase noise or phase dispersion is increased, the
most robust states become increasingly amplitude-squeezed. We find scaling laws
for these states. As the phase diffusion or dispersion becomes so large that
the laser output is no longer quantum coherent, the most robust states become
so squeezed that they cease to have a well-defined coherent amplitude. That is,
the quantum coherence of the laser output is manifest in the most robust PR
states having a well-defined coherent amplitude. This lends support to the idea
that robust PR ensembles are the most natural description of the state of the
laser mode. It also has interesting implications for atom lasers in particular,
for which phase dispersion due to self-interactions is expected to be large.Comment: 16 pages, 9 figures included. To be published in Phys. Rev. A, as
Part II of a two-part paper. The original version of quant-ph/9906125 is
shortly to be replaced by a new version which is Part I of the two-part
paper. This paper (Part II) also contains some material from the original
version of quant-ph/990612
Non-Markovian Open Quantum Systems: Input-Output Fields, Memory, Monitoring
Principles of monitoring non-Markovian open quantum systems are analyzed. We
use the field representation of the environment (Gardiner and Collet, 1985) for
the separation of its memory and detector part, respectively. We claim the
system-plus-memory compound becomes Markovian, the detector part is tractable
by standard Markovian monitoring. Because of non-Markovianity, only the mixed
state of the system can be predicted, the pure state of the system can be
retrodicted. We present the corresponding non-Markovian stochastic
Schr\"odinger equation.Comment: 5 pages, 3 postscript figures; version with brief important
improvement
Inequivalence of pure state ensembles for open quantum systems: the preferred ensembles are those that are physically realizable
An open quantum system in steady state can be represented by
a weighted ensemble of pure states in infinitely many ways. A physically realizable (PR) ensemble is
one for which some continuous measurement of the environment will collapse the
system into a pure state , stochastically evolving such that the
proportion of time for which equals .
Some, but not all, ensembles are PR. This constitutes the preferred ensemble
fact, with the PR ensembles being the preferred ensembles. We present the
necessary and sufficient conditions for a given ensemble to be PR, and
illustrate the method by showing that the coherent state ensemble is not PR for
an atom laser.Comment: 5 pages, no figure
Adiabatic Elimination in Compound Quantum Systems with Feedback
Feedback in compound quantum systems is effected by using the output from one
sub-system (``the system'') to control the evolution of a second sub-system
(``the ancilla'') which is reversibly coupled to the system. In the limit where
the ancilla responds to fluctuations on a much shorter time scale than does the
system, we show that it can be adiabatically eliminated, yielding a master
equation for the system alone. This is very significant as it decreases the
necessary basis size for numerical simulation and allows the effect of the
ancilla to be understood more easily. We consider two types of ancilla: a
two-level ancilla (e.g. a two-level atom) and an infinite-level ancilla (e.g.
an optical mode). For each, we consider two forms of feedback: coherent (for
which a quantum mechanical description of the feedback loop is required) and
incoherent (for which a classical description is sufficient). We test the
master equations we obtain using numerical simulation of the full dynamics of
the compound system. For the system (a parametric oscillator) and feedback
(intensity-dependent detuning) we choose, good agreement is found in the limit
of heavy damping of the ancilla. We discuss the relation of our work to
previous work on feedback in compound quantum systems, and also to previous
work on adiabatic elimination in general.Comment: 18 pages, 12 figures including two subplots as jpeg attachment
Decoherence-full subsystems and the cryptographic power of a private shared reference frame
We show that private shared reference frames can be used to perform private
quantum and private classical communication over a public quantum channel. Such
frames constitute a novel type of private shared correlation (distinct from
private classical keys or shared entanglement) useful for cryptography. We
present optimally efficient schemes for private quantum and classical
communication given a finite number of qubits transmitted over an insecure
channel and given a private shared Cartesian frame and/or a private shared
reference ordering of the qubits. We show that in this context, it is useful to
introduce the concept of a decoherence-full subsystem, wherein every state is
mapped to the completely mixed state under the action of the decoherence.Comment: 13 pages, published versio
Mixed state discrimination using optimal control
We present theory and experiment for the task of discriminating two
nonorthogonal states, given multiple copies. We implement several local
measurement schemes, on both pure states and states mixed by depolarizing
noise. We find that schemes which are optimal (or have optimal scaling) without
noise perform worse with noise than simply repeating the optimal single-copy
measurement. Applying optimal control theory, we derive the globally optimal
local measurement strategy, which outperforms all other local schemes, and
experimentally implement it for various levels of noise.Comment: Corrected ref 1 date; 4 pages & 4 figures + 2 pages & 3 figures
supplementary materia
Adaptive single-shot phase measurements: The full quantum theory
The phase of a single-mode field can be measured in a single-shot measurement
by interfering the field with an effectively classical local oscillator of
known phase. The standard technique is to have the local oscillator detuned
from the system (heterodyne detection) so that it is sometimes in phase and
sometimes in quadrature with the system over the course of the measurement.
This enables both quadratures of the system to be measured, from which the
phase can be estimated. One of us [H.M. Wiseman, Phys. Rev. Lett. 75, 4587
(1995)] has shown recently that it is possible to make a much better estimate
of the phase by using an adaptive technique in which a resonant local
oscillator has its phase adjusted by a feedback loop during the single-shot
measurement. In Ref.~[H.M. Wiseman and R.B. Killip, Phys. Rev. A 56, 944] we
presented a semiclassical analysis of a particular adaptive scheme, which
yielded asymptotic results for the phase variance of strong fields. In this
paper we present an exact quantum mechanical treatment. This is necessary for
calculating the phase variance for fields with small photon numbers, and also
for considering figures of merit other than the phase variance. Our results
show that an adaptive scheme is always superior to heterodyne detection as far
as the variance is concerned. However the tails of the probability distribution
are surprisingly high for this adaptive measurement, so that it does not always
result in a smaller probability of error in phase-based optical communication.Comment: 17 pages, LaTeX, 8 figures (concatenated), Submitted to Phys. Rev.
Continuous quantum error correction via quantum feedback control
We describe a protocol for continuously protecting unknown quantum states
from decoherence that incorporates design principles from both quantum error
correction and quantum feedback control. Our protocol uses continuous
measurements and Hamiltonian operations, which are weaker control tools than
are typically assumed for quantum error correction. We develop a cost function
appropriate for unknown quantum states and use it to optimize our
state-estimate feedback. Using Monte Carlo simulations, we study our protocol
for the three-qubit bit-flip code in detail and demonstrate that it can improve
the fidelity of quantum states beyond what is achievable using quantum error
correction when the time between quantum error correction cycles is limited.Comment: 12 pages, 6 figures, REVTeX; references fixe
- …