4,120 research outputs found

    Developments in plant breeding for improved nutritional quality of soya beans I. Protein and amino acid content

    Get PDF
    Soya beans, like other legumes, contain low concentrations of the nutritionally essential sulphur amino acid, methionine. Cysteine, although not an essential amino acid because it can be synthesized from methionine, also influences the nutritional quality of soya bean products when it is only present in low levels. A low cysteine content will also aggravate a methionine deficiency. Soya bean lines deficient in 7S protein subunits have been identified. The 7S proteins contain substantially less methionine and cysteine than the 11S proteins. With the myriad of genetic null alleles for these subunits it may be possible to tailor the 7S/11S storage protein ratio and their total composition in seeds to include only those subunits with the richest sulphur amino acid composition. Cotyledon feeding experiments, using isolated soya bean cotyledons, demonstrated that addition of methionine to the culture media caused increased synthesis of both proteins and free amino acids but the mechanism by which this takes place is not clear

    Nuclear mutations affecting mitochondrial structure and function in Chlamydomonas

    Get PDF
    Wild type cells of the green alga Chlamydomonas reinhardtii can grow in the in the dark by taking up and respiring exogenously supplied acetate. Obligate photoautotrophic (dark dier, dk) mutants of this alga have been selected which grow at near wild type rates in the light, but rapidly die when transferred to darkness because of defects in mitochondrial structure and function. In crosses of the dk mutants to wild type, the majority of the mutants are inherited in a mendelian fashion, although two have been isolated which are inherited in a clearly nonmendelian fashion. Nine mendelian dk mutants have been analyzed in detail, and belong to eight different complementation groups representing eight gene loci. These mutants have been tentatively grouped into three classes on the basis of the pleiotropic nature of their phenotypic defects. Mutants in Class I have gross alterations in the ultrastructure of their mitochondrial inner membranes together with deficiencies in cytochrome oxidase and antimycin/rotenone-sensitive NADH-cytochrome c reductase activities. Mutants in Class II have a variety of less severe alterations in mitochondrial ultrastructure and deficiencies in cytochrome oxidase activity. Mutants in Class III have normal or near normal mitochondrial ultrastructure and reduced cytochrome oxidase activity. Eight of the nine mutants show corresponding reductions in cyanide-sensitive respiration

    Quantum error correction for continuously detected errors

    Get PDF
    We show that quantum feedback control can be used as a quantum error correction process for errors induced by weak continuous measurement. In particular, when the error model is restricted to one, perfectly measured, error channel per physical qubit, quantum feedback can act to perfectly protect a stabilizer codespace. Using the stabilizer formalism we derive an explicit scheme, involving feedback and an additional constant Hamiltonian, to protect an (n1n-1)-qubit logical state encoded in nn physical qubits. This works for both Poisson (jump) and white-noise (diffusion) measurement processes. In addition, universal quantum computation is possible in this scheme. As an example, we show that detected-spontaneous emission error correction with a driving Hamiltonian can greatly reduce the amount of redundancy required to protect a state from that which has been previously postulated [e.g., Alber \emph{et al.}, Phys. Rev. Lett. 86, 4402 (2001)].Comment: 11 pages, 1 figure; minor correction

    Retroactive quantum jumps in a strongly-coupled atom-field system

    Get PDF
    We investigate a novel type of conditional dynamic that occurs in the strongly-driven Jaynes-Cummings model with dissipation. Extending the work of Alsing and Carmichael [Quantum Opt. {\bf 3}, 13 (1991)], we present a combined numerical and analytic study of the Stochastic Master Equation that describes the system's conditional evolution when the cavity output is continuously observed via homodyne detection, but atomic spontaneous emission is not monitored at all. We find that quantum jumps of the atomic state are induced by its dynamical coupling to the optical field, in order retroactively to justify atypical fluctuations in ocurring in the homodyne photocurrent.Comment: 4 pages, uses RevTex, 5 EPS figure

    Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox

    Get PDF
    We formally link the concept of steering (a concept created by Schrodinger but only recently formalised by Wiseman, Jones and Doherty [Phys. Rev. Lett. 98, 140402 (2007)] and the criteria for demonstrations of Einstein-Podolsky-Rosen (EPR) paradox introduced by Reid [Phys. Rev. A, 40, 913 (1989)]. We develop a general theory of experimental EPR-steering criteria, derive a number of criteria applicable to discrete as well as continuous-variables observables, and study their efficacy in detecting that form of nonlocality in some classes of quantum states. We show that previous versions of EPR-type criteria can be rederived within this formalism, thus unifying these efforts from a modern quantum-information perspective and clarifying their conceptual and formal origin. The theory follows in close analogy with criteria for other forms of quantum nonlocality (Bell-nonlocality, entanglement), and because it is a hybrid of those two, it may lead to insights into the relationship between the different forms of nonlocality and the criteria that are able to detect them.Comment: Changed title, updated references, minor corrections, added journal-ref and DO

    A matched expansion approach to practical self-force calculations

    Full text link
    We discuss a practical method to compute the self-force on a particle moving through a curved spacetime. This method involves two expansions to calculate the self-force, one arising from the particle's immediate past and the other from the more distant past. The expansion in the immediate past is a covariant Taylor series and can be carried out for all geometries. The more distant expansion is a mode sum, and may be carried out in those cases where the wave equation for the field mediating the self-force admits a mode expansion of the solution. In particular, this method can be used to calculate the gravitational self-force for a particle of mass mu orbiting a black hole of mass M to order mu^2, provided mu/M << 1. We discuss how to use these two expansions to construct a full self-force, and in particular investigate criteria for matching the two expansions. As with all methods of computing self-forces for particles moving in black hole spacetimes, one encounters considerable technical difficulty in applying this method; nevertheless, it appears that the convergence of each series is good enough that a practical implementation may be plausible.Comment: IOP style, 8 eps figures, accepted for publication in a special issue of Classical and Quantum Gravit

    Atom laser coherence and its control via feedback

    Full text link
    We present a quantum-mechanical treatment of the coherence properties of a single-mode atom laser. Specifically, we focus on the quantum phase noise of the atomic field as expressed by the first-order coherence function, for which we derive analytical expressions in various regimes. The decay of this function is characterized by the coherence time, or its reciprocal, the linewidth. A crucial contributor to the linewidth is the collisional interaction of the atoms. We find four distinct regimes for the linewidth with increasing interaction strength. These range from the standard laser linewidth, through quadratic and linear regimes, to another constant regime due to quantum revivals of the coherence function. The laser output is only coherent (Bose degenerate) up to the linear regime. However, we show that application of a quantum nondemolition measurement and feedback scheme will increase, by many orders of magnitude, the range of interaction strengths for which it remains coherent.Comment: 15 pages, 6 figures, revtex

    Heterodyne and adaptive phase measurements on states of fixed mean photon number

    Get PDF
    The standard technique for measuring the phase of a single mode field is heterodyne detection. Such a measurement may have an uncertainty far above the intrinsic quantum phase uncertainty of the state. Recently it has been shown [H. M. Wiseman and R. B. Killip, Phys. Rev. A 57, 2169 (1998)] that an adaptive technique introduces far less excess noise. Here we quantify this difference by an exact numerical calculation of the minimum measured phase variance for the various schemes, optimized over states with a fixed mean photon number. We also analytically derive the asymptotics for these variances. For the case of heterodyne detection our results disagree with the power law claimed by D'Ariano and Paris [Phys. Rev. A 49, 3022 (1994)].Comment: 9 pages, 2 figures, minor changes from journal versio
    corecore