612 research outputs found
Canonical form of master equations and characterization of non-Markovianity
Master equations govern the time evolution of a quantum system interacting
with an environment, and may be written in a variety of forms. Time-independent
or memoryless master equations, in particular, can be cast in the well-known
Lindblad form. Any time-local master equation, Markovian or non-Markovian, may
in fact also be written in a Lindblad-like form. A diagonalisation procedure
results in a unique, and in this sense canonical, representation of the
equation, which may be used to fully characterize the non-Markovianity of the
time evolution. Recently, several different measures of non-Markovianity have
been presented which reflect, to varying degrees, the appearance of negative
decoherence rates in the Lindblad-like form of the master equation. We
therefore propose using the negative decoherence rates themselves, as they
appear in the canonical form of the master equation, to completely characterize
non-Markovianity. The advantages of this are especially apparent when more than
one decoherence channel is present. We show that a measure proposed by Rivas et
al. is a surprisingly simple function of the canonical decoherence rates, and
give an example of a master equation that is non-Markovian for all times t>0,
but to which nearly all proposed measures are blind. We also give necessary and
sufficient conditions for trace distance and volume measures to witness
non-Markovianity, in terms of the Bloch damping matrix.Comment: v2: Significant update, with many new results and one new author. 12
pages; v3: Minor clarifications, to appear in PRA; v4: matches published
versio
Quantum projection filter for a highly nonlinear model in cavity QED
Both in classical and quantum stochastic control theory a major role is
played by the filtering equation, which recursively updates the information
state of the system under observation. Unfortunately, the theory is plagued by
infinite-dimensionality of the information state which severely limits its
practical applicability, except in a few select cases (e.g. the linear Gaussian
case.) One solution proposed in classical filtering theory is that of the
projection filter. In this scheme, the filter is constrained to evolve in a
finite-dimensional family of densities through orthogonal projection on the
tangent space with respect to the Fisher metric. Here we apply this approach to
the simple but highly nonlinear quantum model of optical phase bistability of a
stongly coupled two-level atom in an optical cavity. We observe near-optimal
performance of the quantum projection filter, demonstrating the utility of such
an approach.Comment: 19 pages, 6 figures. A version with high quality images can be found
at http://minty.caltech.edu/papers.ph
Disorder-Induced Critical Phenomena in Hysteresis: Numerical Scaling in Three and Higher Dimensions
We present numerical simulations of avalanches and critical phenomena
associated with hysteresis loops, modeled using the zero-temperature
random-field Ising model. We study the transition between smooth hysteresis
loops and loops with a sharp jump in the magnetization, as the disorder in our
model is decreased. In a large region near the critical point, we find scaling
and critical phenomena, which are well described by the results of an epsilon
expansion about six dimensions. We present the results of simulations in 3, 4,
and 5 dimensions, with systems with up to a billion spins (1000^3).Comment: Condensed and updated version of cond-mat/9609072,``Disorder-Induced
Critical Phenomena in Hysteresis: A Numerical Scaling Analysis'
Post-Newtonian Models of Binary Neutron Stars
Using an energy variational method, we calculate quasi-equilibrium
configurations of binary neutron stars modeled as compressible triaxial
ellipsoids obeying a polytropic equation of state. Our energy functional
includes terms both for the internal hydrodynamics of the stars and for the
external orbital motion. We add the leading post-Newtonian (PN) corrections to
the internal and gravitational energies of the stars, and adopt hybrid orbital
terms which are fully relativistic in the test-mass limit and always accurate
to PN order. The total energy functional is varied to find quasi-equilibrium
sequences for both corotating and irrotational binaries in circular orbits. We
examine how the orbital frequency at the innermost stable circular orbit
depends on the polytropic index n and the compactness parameter GM/Rc^2. We
find that, for a given GM/Rc^2, the innermost stable circular orbit along an
irrotational sequence is about 17% larger than the innermost secularly stable
circular orbit along the corotating sequence when n=0.5, and 20% larger when
n=1. We also examine the dependence of the maximum neutron star mass on the
orbital frequency and find that, if PN tidal effects can be neglected, the
maximum equilibrium mass increases as the orbital separation decreases.Comment: 53 pages, LaTex, 9 figures as 10 postscript files, accepted by Phys.
Rev. D, replaced version contains updated reference
- …