4,114 research outputs found
Recommended from our members
Assessment of sexual difficulties associated with multi-modal treatment for cervical or endometrial cancer: A systematic review of measurement instruments
Background: Practitioners and researchers require an outcome measure that accurately identifies the range of common treatment-induced changes in sexual function and well-being experienced by women after cervical or endometrial cancer. This systematic review critically appraised the measurement properties and clinical utility of instruments validated for the measurement of female sexual dysfunction (FSD) in this clinical population.
Methods: A bibliographic database search for questionnaire development or validation papers was completed and methodological quality and measurement properties of selected studies rated using the Consensus-based Standards for the selection of health Measurement Instrument (COSMIN) checklist.
Results: 738 articles were screened, 13 articles retrieved for full text assessment and 7 studies excluded, resulting in evaluation of 6 papers; 2 QoL and 4 female sexual morbidity measures.
Five of the six instruments omitted one or more dimension of female sexual function and only one instrument explicitly measured distress associated with sexual changes as per DSM V (APA 2013) diagnostic criteria.
None of the papers reported measurement error, responsiveness data was available for only two instruments, three papers failed to report on criterion validity, and test-retest reliability reporting was inconsistent. Heterosexual penile-vaginal intercourse remains the dominant sexual activity focus for sexual morbidity PROMS terminology and instruments lack explicit reference to solo or non-coital sexual expression or validation in a non-heterosexual sample. Four out of six instruments included mediating treatment or illness items such as vaginal changes, menopause or altered body image.
Conclusions: Findings suggest that the Female Sexual Function Index (FSFI) remains the most robust sexual morbidity outcome measure, for research or clinical use, in sexually active women treated for cervical or endometrial cancer
A matched expansion approach to practical self-force calculations
We discuss a practical method to compute the self-force on a particle moving
through a curved spacetime. This method involves two expansions to calculate
the self-force, one arising from the particle's immediate past and the other
from the more distant past. The expansion in the immediate past is a covariant
Taylor series and can be carried out for all geometries. The more distant
expansion is a mode sum, and may be carried out in those cases where the wave
equation for the field mediating the self-force admits a mode expansion of the
solution. In particular, this method can be used to calculate the gravitational
self-force for a particle of mass mu orbiting a black hole of mass M to order
mu^2, provided mu/M << 1. We discuss how to use these two expansions to
construct a full self-force, and in particular investigate criteria for
matching the two expansions. As with all methods of computing self-forces for
particles moving in black hole spacetimes, one encounters considerable
technical difficulty in applying this method; nevertheless, it appears that the
convergence of each series is good enough that a practical implementation may
be plausible.Comment: IOP style, 8 eps figures, accepted for publication in a special issue
of Classical and Quantum Gravit
The Consumption of Reference Resources
Under the operational restriction of the U(1)-superselection rule, states
that contain coherences between eigenstates of particle number constitute a
resource. Such resources can be used to facilitate operations upon systems that
otherwise cannot be performed. However, the process of doing this consumes
reference resources. We show this explicitly for an example of a unitary
operation that is forbidden by the U(1)-superselection rule.Comment: 4 pages 6x9 page format, 2 figure
All-optical versus electro-optical quantum-limited feedback
All-optical feedback can be effected by putting the output of a source cavity
through a Faraday isolator and into a second cavity which is coupled to the
source cavity by a nonlinear crystal. If the driven cavity is heavily damped,
then it can be adiabatically eliminated and a master equation or quantum
Langevin equation derived for the first cavity alone. This is done for an input
bath in an arbitrary state, and for an arbitrary nonlinear coupling. If the
intercavity coupling involves only the intensity (or one quadrature) of the
driven cavity, then the effect on the source cavity is identical to that which
can be obtained from electro-optical feedback using direct (or homodyne)
detection. If the coupling involves both quadratures, this equivalence no
longer holds, and a coupling linear in the source amplitude can produce a
nonclassical state in the source cavity. The analogous electro-optic scheme
using heterodyne detection introduces extra noise which prevents the production
of nonclassical light. Unlike the electro-optic case, the all-optical feedback
loop has an output beam (reflected from the second cavity). We show that this
may be squeezed, even if the source cavity remains in a classical state.Comment: 21 pages. This is an old (1994) paper, but one which I thought was
worth posting because in addition to what is described in abstract it has:
(1) the first formulation (to my knowledge) of quantum trajectories for an
arbitrary (i.e. squeezed, thermal etc.) broadband bath; (2) the prediction of
a periodic modification to the detuning and damping of an oscillator for the
simplest sort of all-optical feedback (i.e. a mirror) as seen in the recent
experiment "Forces between a Single Atom and Its Distant Mirror Image", P.
Bushev et al, Phys. Rev. Lett. 92, 223602 (2004
Atom Lasers, Coherent States, and Coherence:II. Maximally Robust Ensembles of Pure States
As discussed in Wiseman and Vaccaro [quant-ph/9906125], the stationary state
of an optical or atom laser far above threshold is a mixture of coherent field
states with random phase, or, equivalently, a Poissonian mixture of number
states. We are interested in which, if either, of these descriptions of
, is more natural. In the preceding paper we concentrated upon
whether descriptions such as these are physically realizable (PR). In this
paper we investigate another relevant aspect of these ensembles, their
robustness. A robust ensemble is one for which the pure states that comprise it
survive relatively unchanged for a long time under the system evolution. We
determine numerically the most robust ensembles as a function of the parameters
in the laser model: the self-energy of the bosons in the laser mode, and
the excess phase noise . We find that these most robust ensembles are PR
ensembles, or similar to PR ensembles, for all values of these parameters. In
the ideal laser limit (), the most robust states are coherent
states. As the phase noise or phase dispersion is increased, the
most robust states become increasingly amplitude-squeezed. We find scaling laws
for these states. As the phase diffusion or dispersion becomes so large that
the laser output is no longer quantum coherent, the most robust states become
so squeezed that they cease to have a well-defined coherent amplitude. That is,
the quantum coherence of the laser output is manifest in the most robust PR
states having a well-defined coherent amplitude. This lends support to the idea
that robust PR ensembles are the most natural description of the state of the
laser mode. It also has interesting implications for atom lasers in particular,
for which phase dispersion due to self-interactions is expected to be large.Comment: 16 pages, 9 figures included. To be published in Phys. Rev. A, as
Part II of a two-part paper. The original version of quant-ph/9906125 is
shortly to be replaced by a new version which is Part I of the two-part
paper. This paper (Part II) also contains some material from the original
version of quant-ph/990612
On quantum error-correction by classical feedback in discrete time
We consider the problem of correcting the errors incurred from sending
quantum information through a noisy quantum environment by using classical
information obtained from a measurement on the environment. For discrete time
Markovian evolutions, in the case of fixed measurement on the environment, we
give criteria for quantum information to be perfectly corrigible and
characterize the related feedback. Then we analyze the case when perfect
correction is not possible and, in the qubit case, we find optimal feedback
maximizing the channel fidelity.Comment: 11 pages, 1 figure, revtex
Heterodyne and adaptive phase measurements on states of fixed mean photon number
The standard technique for measuring the phase of a single mode field is
heterodyne detection. Such a measurement may have an uncertainty far above the
intrinsic quantum phase uncertainty of the state. Recently it has been shown
[H. M. Wiseman and R. B. Killip, Phys. Rev. A 57, 2169 (1998)] that an adaptive
technique introduces far less excess noise. Here we quantify this difference by
an exact numerical calculation of the minimum measured phase variance for the
various schemes, optimized over states with a fixed mean photon number. We also
analytically derive the asymptotics for these variances. For the case of
heterodyne detection our results disagree with the power law claimed by
D'Ariano and Paris [Phys. Rev. A 49, 3022 (1994)].Comment: 9 pages, 2 figures, minor changes from journal versio
Decoherence-full subsystems and the cryptographic power of a private shared reference frame
We show that private shared reference frames can be used to perform private
quantum and private classical communication over a public quantum channel. Such
frames constitute a novel type of private shared correlation (distinct from
private classical keys or shared entanglement) useful for cryptography. We
present optimally efficient schemes for private quantum and classical
communication given a finite number of qubits transmitted over an insecure
channel and given a private shared Cartesian frame and/or a private shared
reference ordering of the qubits. We show that in this context, it is useful to
introduce the concept of a decoherence-full subsystem, wherein every state is
mapped to the completely mixed state under the action of the decoherence.Comment: 13 pages, published versio
Mixed state discrimination using optimal control
We present theory and experiment for the task of discriminating two
nonorthogonal states, given multiple copies. We implement several local
measurement schemes, on both pure states and states mixed by depolarizing
noise. We find that schemes which are optimal (or have optimal scaling) without
noise perform worse with noise than simply repeating the optimal single-copy
measurement. Applying optimal control theory, we derive the globally optimal
local measurement strategy, which outperforms all other local schemes, and
experimentally implement it for various levels of noise.Comment: Corrected ref 1 date; 4 pages & 4 figures + 2 pages & 3 figures
supplementary materia
- …