10,442 research outputs found
Research related to measurements of atomic species in the earth's upper atmosphere Final report
Interaction kinetics of atomic oxygen and hydrogen on metal surfaces of satellite-borne mass spectrometer
X-ray Supercavities in the Hydra A Cluster and the Outburst History of the Central Galaxy's Active Nucleus
A 227 ksec Chandra Observatory X-ray image of the hot plasma in the Hydra A
cluster has revealed an extensive cavity system. The system was created by a
continuous outflow or a series of bursts from the nucleus of the central galaxy
over the past 200-500 Myr. The cavities have displaced 10% of the plasma within
a 300 kpc radius of the central galaxy, creating a swiss-cheese-like topology
in the hot gas. The surface brightness decrements are consistent with empty
cavities oriented within 40 degrees of the plane of the sky. The outflow has
deposited upward of 10^61 erg into the cluster gas, most of which was propelled
beyond the inner ~100 kpc cooling region. The supermassive black hole has
accreted at a rate of approximately 0.1-0.25 solar masses per year over this
time frame, which is a small fraction of the Eddington rate of a ~10^9 solar
mass black hole, but is dramatically larger than the Bondi rate. Given the
previous evidence for a circumnuclear disk of cold gas in Hydra A, these
results are consistent with the AGN being powered primarily by infalling cold
gas. The cavity system is shadowed perfectly by 330 MHz radio emission. Such
low frequency synchrotron emission may be an excellent proxy for X-ray cavities
and thus the total energy liberated by the supermassive black hole.Comment: 8 pages, 3 figures; Submitted to ApJ, revised per referee's
suggestion
Dwarf Galaxies with Ionizing Radiation Feedback. I: Escape of Ionizing Photons
We describe a new method for simulating ionizing radiation and supernova
feedback in the analogues of low-redshift galactic disks. In this method, which
we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing
technique to solve the radiative transfer equation for ultraviolet photons
emitted by thousands of distinct particles on the fly. Joined with high
numerical resolution of 3.8 pc, the realistic description of stellar feedback
helps to self-regulate star formation. This new feedback scheme also enables us
to study the escape of ionizing photons from star-forming clumps and from a
galaxy, and to examine the evolving environment of star-forming gas clumps. By
simulating a galactic disk in a halo of 2.3e11 Msun, we find that the average
escape fraction from all radiating sources on the spiral arms (excluding the
central 2.5 kpc) fluctuates between 0.08% and 5.9% during a ~20 Myr period with
a mean value of 1.1%. The flux of escaped photons from these sources is not
strongly beamed, but manifests a large opening angle of more than 60 degree
from the galactic pole. Further, we investigate the escape fraction per SFMC
particle, f_esc(i), and how it evolves as the particle ages. We discover that
the average escape fraction f_esc is dominated by a small number of SFMC
particles with high f_esc(i). On average, the escape fraction from a SFMC
particle rises from 0.27% at its birth to 2.1% at the end of a particle
lifetime, 6 Myrs. This is because SFMC particles drift away from the dense gas
clumps in which they were born, and because the gas around the star-forming
clumps is dispersed by ionizing radiation and supernova feedback. The framework
established in this study brings deeper insight into the physics of photon
escape fraction from an individual star-forming clump, and from a galactic
disk.Comment: 15 pages, 12 figures, Accepted for publication in the Astrophysical
Journal, Image resolution reduced, High-resolution version of this article is
available at http://www.jihoonkim.org/index/research.html#sfm
Dwarf Galaxies with Ionizing Radiation Feedback. II: Spatially-resolved Star Formation Relation
We investigate the spatially-resolved star formation relation using a
galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation.
Our new implementation of stellar feedback includes ionizing radiation as well
as supernova explosions, and we handle ionizing radiation by solving the
radiative transfer equation rather than by a subgrid model. Photoheating by
stellar radiation stabilizes gas against Jeans fragmentation, reducing the star
formation rate. Because we have self-consistently calculated the location of
ionized gas, we are able to make spatially-resolved mock observations of star
formation tracers, such as H-alpha emission. We can also observe how stellar
feedback manifests itself in the correlation between ionized and molecular gas.
Applying our techniques to the disk in a galactic halo of 2.3e11 Msun, we find
that the correlation between star formation rate density (estimated from mock
H-alpha emission) and molecular hydrogen density shows large scatter,
especially at high resolutions of <~ 75 pc that are comparable to the size of
giant molecular clouds (GMCs). This is because an aperture of GMC size captures
only particular stages of GMC evolution, and because H-alpha traces hot gas
around star-forming regions and is displaced from the molecular hydrogen peaks
themselves. By examining the evolving environment around star clusters, we
speculate that the breakdown of the traditional star formation laws of the
Kennicutt-Schmidt type at small scales is further aided by a combination of
stars drifting from their birthplaces, and molecular clouds being dispersed via
stellar feedback.Comment: 16 pages, 15 figures, Accepted for publication in the Astrophysical
Journal, Image resolution greatly reduced, High-resolution version of this
article is available at http://www.jihoonkim.org/index/research.html#sfm
A Comparative Analysis of State Regulations for Use of Agricultural Chemicals
Policies to regulate pesticides at the national level have not changed as new issues, such as groundwater contamination, have emerged. Therefore, various states are responding. This paper discusses recent state initiatives in regulating pesticides to prevent groundwater contamination, and suggests trends in these policies. A survey of legislators who have sponsored pesticide/groundwater contamination legislation is presented. Survey results show the factors affecting bill introduction, the influence of interest groups on the bills, important issues in bill debate, and trends in future legislation. A statistical analysis of the survey states and survey responses is also presented, using economic, political, and physical factors as explanatory variables
The Activated Singer: Components of an Emerging Singing Identity in Adults Learning to Sing
Many adults avoid singing participation, even in informal situations. We examined components of singing identity in self-identified non-singers using questionnaires, including a novel Singing Inhibition (SI) scale, among 238 adults volunteering for a training study. Higher levels of Singing Inhibition were predicted by a combination of lower self-reported singing skill, lower Parental/Family Engagement in singing, and stronger belief that singing is a fixed ability. A subsample of 20 self-reported non-singers (aged 23–71) participated in 10 months of singing lessons, and we tracked changes in objective singing competence as well as self-assessments and singing-related attitudes and beliefs at baseline, at six months, and at the conclusion. Among the trainees, some but not all aspects of singing improved. Importantly, we found that after six months, participants showed a significant reduction in Elitist Attitudes and Sensitivity to Social Judgment in singing and viewed singing as more open to improvement rather than a fixed talent. Self-assessment of accuracy, vocal tone, and physical sensations also improved. We view this shift as becoming an Activated Singer, encompassing both skills and attitudes, which is encouragement for even life-long non-singers to begin the journey to becoming a singer
The Detectability of AGN Cavities in Cooling-Flow Clusters
Chandra X-ray Observatory has revealed X-ray cavities in many nearby cooling
flow clusters. The cavities trace feedback from the central active galactic
nulceus (AGN) on the intracluster medium (ICM), an important ingredient in
stabilizing cooling flows and in the process of galaxy formation and evolution.
But, the prevalence and duty cycle of such AGN outbursts is not well
understood. To this end, we study how the cooling is balanced by the cavity
heating for a complete sample of clusters (the Brightest 55 clusters of
galaxies, hereafter B55). In the B55, we found 33 cooling flow clusters, 20 of
which have detected X-ray bubbles in their ICM. Among the remaining 13, all
except Ophiuchus could have significant cavity power yet remain undetected in
existing images. This implies that the duty cycle of AGN outbursts with
significant heating potential in cooling flow clusters is at least 60 % and
could approach 100 %, but deeper data is required to constrain this further.Comment: 4 pages, 2 figures; to appear in the proceedings of "The Monsters'
Fiery Breath", Madison, Wisconsin 1-5 June 2009, Eds. Sebastian Heinz & Eric
Wilcots; added annotation to the figur
- …