7,265 research outputs found
Research related to measurements of atomic species in the earth's upper atmosphere Final report
Interaction kinetics of atomic oxygen and hydrogen on metal surfaces of satellite-borne mass spectrometer
Classical stability of a homogeneous, anisotropic inflating space-time
We study the classical stability of an anisotropic space-time seeded by a
spacelike, fixed norm, dynamical vector field in a vacuum-energy-dominated
inflationary era. It serves as a model for breaking isotropy during the
inflationary era. We find that, for a range of parameters, the linear
differential equations for small perturbations about the background do not have
a growing mode. We also examine the energy of fluctuations about this
background in flat-space. If the kinetic terms for the vector field do not take
the form of a field strength tensor squared then there is a negative energy
mode and the background is unstable. For the case where the kinetic term is of
the form of a field strength tensor squared we show that perturbations about
the background have positive energy at lowest order.Comment: 12 pages, no figures; references added, content in section V revised
and some clarification made in text; minor typos corrected, v4 closely
resembles version published in Phys. Rev. D; in v5 - incorrect argument in
section V removed and one reference adde
The Detectability of AGN Cavities in Cooling-Flow Clusters
Chandra X-ray Observatory has revealed X-ray cavities in many nearby cooling
flow clusters. The cavities trace feedback from the central active galactic
nulceus (AGN) on the intracluster medium (ICM), an important ingredient in
stabilizing cooling flows and in the process of galaxy formation and evolution.
But, the prevalence and duty cycle of such AGN outbursts is not well
understood. To this end, we study how the cooling is balanced by the cavity
heating for a complete sample of clusters (the Brightest 55 clusters of
galaxies, hereafter B55). In the B55, we found 33 cooling flow clusters, 20 of
which have detected X-ray bubbles in their ICM. Among the remaining 13, all
except Ophiuchus could have significant cavity power yet remain undetected in
existing images. This implies that the duty cycle of AGN outbursts with
significant heating potential in cooling flow clusters is at least 60 % and
could approach 100 %, but deeper data is required to constrain this further.Comment: 4 pages, 2 figures; to appear in the proceedings of "The Monsters'
Fiery Breath", Madison, Wisconsin 1-5 June 2009, Eds. Sebastian Heinz & Eric
Wilcots; added annotation to the figur
Dark Matter, Baryon Asymmetry, and Spontaneous B and L Breaking
We investigate the dark matter and the cosmological baryon asymmetry in a
simple theory where baryon (B) and lepton (L) number are local gauge symmetries
that are spontaneously broken. In this model, the cold dark matter candidate is
the lightest new field with baryon number and its stability is an automatic
consequence of the gauge symmetry. Dark matter annihilation is either through a
leptophobic gauge boson whose mass must be below a TeV or through the Higgs
boson. Since the mass of the leptophobic gauge boson has to be below the TeV
scale one finds that in the first scenario there is a lower bound on the
elastic cross section of about 5x10^{-46} cm^2. Even though baryon number is
gauged and not spontaneously broken until the weak scale, a cosmologically
acceptable baryon excess is possible. There is tension between achieving both
the measured baryon excess and the dark matter density.Comment: 23 pages, 5 figures; revised version, typos removed, references
added, discussion expande
X-ray Supercavities in the Hydra A Cluster and the Outburst History of the Central Galaxy's Active Nucleus
A 227 ksec Chandra Observatory X-ray image of the hot plasma in the Hydra A
cluster has revealed an extensive cavity system. The system was created by a
continuous outflow or a series of bursts from the nucleus of the central galaxy
over the past 200-500 Myr. The cavities have displaced 10% of the plasma within
a 300 kpc radius of the central galaxy, creating a swiss-cheese-like topology
in the hot gas. The surface brightness decrements are consistent with empty
cavities oriented within 40 degrees of the plane of the sky. The outflow has
deposited upward of 10^61 erg into the cluster gas, most of which was propelled
beyond the inner ~100 kpc cooling region. The supermassive black hole has
accreted at a rate of approximately 0.1-0.25 solar masses per year over this
time frame, which is a small fraction of the Eddington rate of a ~10^9 solar
mass black hole, but is dramatically larger than the Bondi rate. Given the
previous evidence for a circumnuclear disk of cold gas in Hydra A, these
results are consistent with the AGN being powered primarily by infalling cold
gas. The cavity system is shadowed perfectly by 330 MHz radio emission. Such
low frequency synchrotron emission may be an excellent proxy for X-ray cavities
and thus the total energy liberated by the supermassive black hole.Comment: 8 pages, 3 figures; Submitted to ApJ, revised per referee's
suggestion
Gravity from a fermionic condensate of a gauge theory
The most prominent realization of gravity as a gauge theory similar to the
gauge theories of the standard model comes from enlarging the gauge group from
the Lorentz group to the de Sitter group. To regain ordinary Einstein-Cartan
gravity the symmetry must be broken, which can be accomplished by known
quasi-dynamic mechanisms. Motivated by symmetry breaking models in particle
physics and condensed matter systems, we propose that the symmetry can
naturally be broken by a homogenous and isotropic fermionic condensate of
ordinary spinors. We demonstrate that the condensate is compatible with the
Einstein-Cartan equations and can be imposed in a fully de Sitter invariant
manner. This lends support, and provides a physically realistic mechanism for
understanding gravity as a gauge theory with a spontaneously broken local de
Sitter symmetry.Comment: 16 page
Three-body decays of the proton
The rates for the three-body proton decays p→ππe+ are related to the rate for the decay p→π0e+. This is done by making an ansatz for the form of the three-body amplitude which is consistent with current algebra and with the measured ππ final-state interactions. We find that the three-body decay rates are comparable with the rate for the two-body decay p→π0e+
Jet Interactions with the Hot Halos of Clusters and Galaxies
X-ray observations of cavities and shock fronts produced by jets streaming
through hot halos have significantly advanced our understanding of the
energetics and dynamics of extragalactic radio sources. Radio sources at the
centers of clusters have dynamical ages between ten and several hundred million
years. They liberate between 1E58-1E62 erg per outburst, which is enough energy
to regulate cooling of hot halos from galaxies to the richest clusters. Jet
power scales approximately with the radio synchrotron luminosity to the one
half power. However, the synchrotron efficiency varies widely from nearly unity
to one part in 10,000, such that relatively feeble radio source can have
quasar-like mechanical power. The synchrotron ages of cluster radio sources are
decoupled from their dynamical ages, which tend to be factors of several to
orders of magnitude older. Magnetic fields and particles in the lobes tend to
be out of equipartition. The lobes may be maintained by heavy particles (e.g.,
protons), low energy electrons, a hot, diffuse thermal gas, or possibly
magnetic (Poynting) stresses. Sensitive X-ray images of shock fronts and
cavities can be used to study the dynamics of extragalactic radio sources.Comment: 10 pages, 3 figures, invited review, "Extragalactic Jets: Theory and
Observation from Radio to Gamma Ray, held in Girdwood, Alaska, U.S.A. 21-24
May, 2007, minor text changes; one added referenc
- …