5,717 research outputs found

    Start/stop switches for testing detonation velocity of explosives

    Get PDF
    Printed-circuit process produces ordnance-initiated start/stop switches. Method is faster and less costly than fabriction by hand, and produces switches of uniform quality

    Reverse Triangle Inequalities for Riesz Potentials and Connections with Polarization

    Full text link
    We study reverse triangle inequalities for Riesz potentials and their connection with polarization. This work generalizes inequalities for sup norms of products of polynomials, and reverse triangle inequalities for logarithmic potentials. The main tool used in the proofs is the representation for a power of the farthest distance function as a Riesz potential of a unit Borel measure

    Saturated hydrocarbon polymeric binder for advanced solid propellant and hybrid solid grains Quarterly report no. 2, 1 Feb. - 30 Apr. 1966

    Get PDF
    Synthesis and analysis of ethylene-neohexene copolymers with other non ketene-imine group free radicals for solid and hybrid grain propellant saturated hydrocarbon binder progra

    Criteria for the experimental observation of multi-dimensional optical solitons in saturable media

    Full text link
    Criteria for experimental observation of multi-dimensional optical solitons in media with saturable refractive nonlinearities are developed. The criteria are applied to actual material parameters (characterizing the cubic self-focusing and quintic self-defocusing nonlinearities, two-photon loss, and optical-damage threshold) for various glasses. This way, we identify operation windows for soliton formation in these glasses. It is found that two-photon absorption sets stringent limits on the windows. We conclude that, while a well-defined window of parameters exists for two-dimensional solitons (spatial or spatiotemporal), for their three-dimensional spatiotemporal counterparts such a window \emph{does not} exist, due to the nonlinear loss in glasses.Comment: 8 pages, to appear in Phys. Rev.

    The Detectability of AGN Cavities in Cooling-Flow Clusters

    Full text link
    Chandra X-ray Observatory has revealed X-ray cavities in many nearby cooling flow clusters. The cavities trace feedback from the central active galactic nulceus (AGN) on the intracluster medium (ICM), an important ingredient in stabilizing cooling flows and in the process of galaxy formation and evolution. But, the prevalence and duty cycle of such AGN outbursts is not well understood. To this end, we study how the cooling is balanced by the cavity heating for a complete sample of clusters (the Brightest 55 clusters of galaxies, hereafter B55). In the B55, we found 33 cooling flow clusters, 20 of which have detected X-ray bubbles in their ICM. Among the remaining 13, all except Ophiuchus could have significant cavity power yet remain undetected in existing images. This implies that the duty cycle of AGN outbursts with significant heating potential in cooling flow clusters is at least 60 % and could approach 100 %, but deeper data is required to constrain this further.Comment: 4 pages, 2 figures; to appear in the proceedings of "The Monsters' Fiery Breath", Madison, Wisconsin 1-5 June 2009, Eds. Sebastian Heinz & Eric Wilcots; added annotation to the figur

    X-ray Supercavities in the Hydra A Cluster and the Outburst History of the Central Galaxy's Active Nucleus

    Get PDF
    A 227 ksec Chandra Observatory X-ray image of the hot plasma in the Hydra A cluster has revealed an extensive cavity system. The system was created by a continuous outflow or a series of bursts from the nucleus of the central galaxy over the past 200-500 Myr. The cavities have displaced 10% of the plasma within a 300 kpc radius of the central galaxy, creating a swiss-cheese-like topology in the hot gas. The surface brightness decrements are consistent with empty cavities oriented within 40 degrees of the plane of the sky. The outflow has deposited upward of 10^61 erg into the cluster gas, most of which was propelled beyond the inner ~100 kpc cooling region. The supermassive black hole has accreted at a rate of approximately 0.1-0.25 solar masses per year over this time frame, which is a small fraction of the Eddington rate of a ~10^9 solar mass black hole, but is dramatically larger than the Bondi rate. Given the previous evidence for a circumnuclear disk of cold gas in Hydra A, these results are consistent with the AGN being powered primarily by infalling cold gas. The cavity system is shadowed perfectly by 330 MHz radio emission. Such low frequency synchrotron emission may be an excellent proxy for X-ray cavities and thus the total energy liberated by the supermassive black hole.Comment: 8 pages, 3 figures; Submitted to ApJ, revised per referee's suggestion
    corecore