41 research outputs found

    MicroRNA expression after ionizing radiation in human endothelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelial cells (EC) in tumor and normal tissue constitute critical radiotherapy targets. MicroRNAs have emerged as master switchers of the cellular transcriptome. Here, we seek to investigate the role of miRNAs in primary human dermal microvascular endothelial cells (HDMEC) after ionizing radiation.</p> <p>Methods</p> <p>The microRNA status in HDMEC after 2 Gy radiation treatment was measured using oligo-microarrays covering 361 miRNAs. To functionally analyze the role of radiation-induced differentially regulated miRNAs, cells were transfected with miRNA precursor or inhibitor constructs. Clonogenic survival and proliferation assays were performed.</p> <p>Results</p> <p>Radiation up-regulated miRNA expression levels included let-7g, miR-16, miR-20a, miR-21 and miR-29c, while miR-18a, miR-125a, miR-127, miR-148b, miR-189 and miR-503 were down-regulated. We found that overexpression or inhibition of let-7g, miR-189, and miR-20a markedly influenced clonogenic survival and cell proliferation per se. Notably, the radiosensitivity of HDMEC was significantly influenced by differential expression of miR-125a, -127, -189, and let-7g. While miR-125a and miR-189 had a radioprotective effect, miR-127 and let-7g enhanced radiosensitivity in human endothelial cells.</p> <p>Conclusion</p> <p>Our data show that ionizing radiation changes microRNA levels in human endothelial cells and, moreover, exerts biological effects on cell growth and clonogenicity as validated in functional assays. The data also suggest that the miRNAs which are differentially expressed after radiation modulate the intrinsic radiosensitivity of endothelial cells in subsequent irradiations. This indicates that miRNAs are part of the innate response mechanism of the endothelium to radiation.</p

    TableButler – a Windows based tool for processing large data tables generated with high-throughput methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput "omics" based data analysis play emerging roles in life sciences and molecular diagnostics. This emphasizes the urgent need for user-friendly windows-based software interfaces that could process the diversity of large tab-delimited raw data files generated by these methods. Depending on the study, dozens to hundreds of these data tables are generated. Before the actual statistical or cluster analysis, these data tables have to be combined and merged to expression matrices (e.g., in case of gene expression analysis). Gene annotations as well as information concerning the samples analyzed may be appended, renewed or extended. Often additional data values shall be computed or certain features must be filtered out.</p> <p>Results</p> <p>In order to perform these tasks, we have developed a Microsoft Windows based application, "<b><it>TableButler</it></b>", which allows biologists or clinicians without substantial bioinformatics background to perform a plethora of data processing tasks required to analyze the large-scale data.</p> <p>Conclusion</p> <p><b><it>TableButler </it></b>is a monolithic Windows application. It is implemented to handle, join and preprocess large tab delimited ASCII data files. The intuitive user interface enables scientists (e.g. biologists, clinicians or others) to setup workflows for their specific problems by simple drag-and drop like operations.</p> <p>For more details about <b><it>TableButler</it></b>, visit <url>http://www.OncoExpress.org/software/tablebutler</url>.</p

    The impact of tumor metabolic activity assessed by 18^{18}F-FET amino acid PET imaging in particle radiotherapy of high-grade glioma patients

    Get PDF
    Selective uptake of (18)F-fluoro-ethyl-tyrosine (18^{18}F-FET) is used in high-grade glioma (HGG) to assess tumor metabolic activity via positron emission tomography (PET). We aim to investigate its value for target volume definition, as a prognosticator, and associations with whole-blood transcriptome liquid biopsy (WBT lbx) for which we recently reported feasibility to mirror tumor characteristics and response to particle irradiation in recurrent HGG (rHGG)

    DNA-Methylome based Tumor Hypoxia Classifier Identifies HPV-negative Head & Neck Cancer Patients at Risk for Locoregional Recurrence After Primary Radiochemotherapy

    Full text link
    BACKGROUND Tumor hypoxia is a paradigmatic negative prognosticator of treatment resistance in Head and Neck Squamous Cell Carcinoma (HNSCC). The lack of robust and reliable hypoxia classifiers limits the adaptation of stratified therapies. We hypothesized that the tumor DNA methylation landscape might indicate epigenetic reprogramming induced by chronic intratumoral hypoxia. METHODS A DNA methylome-based tumor hypoxia classifier (Hypoxia-M) was trained in the TCGA-HNSCC cohort based on matched assignments using gene expression-based signatures of hypoxia (Hypoxia-GES). Hypoxia-M was validated in a multicenter DKTK-ROG trial consisting of Human Papilloma Virus (HPV)-negative HNSCC patients treated with primary radiochemotherapy (RCHT). RESULTS While hypoxia-GSEs failed to stratify patients in the DKTK-ROG, Hypoxia-M was independently prognostic for local recurrence (LR, HR=4.3, p=0.001) and overall survival (OS, HR=2.34, p=0.03) but not distant metastasis (DM) after RCHT in the both cohorts. Hypoxia-M status was inversely associated with CD8 T-cells infiltration in both cohorts. Hypoxia-M was further prognostic in the TCGA-PanCancer cohort (HR=1.83, p=0.04), underscoring the breadth of this classifier for predicting tumor hypoxia status. CONCLUSIONS Our findings highlight an unexplored avenue for DNA Methylation-based classifiers as biomarkers of tumoral hypoxia for identifying high-risk features in patients with HNSCC tumors. TRIAL REGISTRATION Retrospective observational study from the German Cancer Consortium (DKTK-ROG), not interventional

    Investigation of tumor hypoxia using a two-enzyme system for in vitro generation of oxygen deficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxygen deficiency in tumor tissue is associated with a malign phenotype, characterized by high invasiveness, increased metastatic potential and poor prognosis. Hypoxia chambers are the established standard model for <it>in vitro </it>studies on tumor hypoxia. An enzymatic hypoxia system (GOX/CAT) based on the use of glucose oxidase (GOX) and catalase (CAT) that allows induction of stable hypoxia for <it>in vitro </it>approaches more rapidly and with less operating expense has been introduced recently. Aim of this work is to compare the enzymatic system with the established technique of hypoxia chamber in respect of gene expression, glucose metabolism and radioresistance, prior to its application for <it>in vitro </it>investigation of oxygen deficiency.</p> <p>Methods</p> <p>Human head and neck squamous cell carcinoma HNO97 cells were incubated under normoxic and hypoxic conditions using both hypoxia chamber and the enzymatic model. Gene expression was investigated using Agilent microarray chips and real time PCR analysis. <sup>14</sup>C-fluoro-deoxy-glucose uptake experiments were performed in order to evaluate cellular metabolism. Cell proliferation after photon irradiation was investigated for evaluation of radioresistance under normoxia and hypoxia using both a hypoxia chamber and the enzymatic system.</p> <p>Results</p> <p>The microarray analysis revealed a similar trend in the expression of known HIF-1 target genes between the two hypoxia systems for HNO97 cells. Quantitative RT-PCR demonstrated different kinetic patterns in the expression of carbonic anhydrase IX and lysyl oxidase, which might be due to the faster induction of hypoxia by the enzymatic system. <sup>14</sup>C-fluoro-deoxy-glucose uptake assays showed a higher glucose metabolism under hypoxic conditions, especially for the enzymatic system. Proliferation experiments after photon irradiation revealed increased survival rates for the enzymatic model compared to hypoxia chamber and normoxia, indicating enhanced resistance to irradiation. While the GOX/CAT system allows independent investigation of hypoxia and oxidative stress, care must be taken to prevent acidification during longer incubation.</p> <p>Conclusion</p> <p>The results of our study indicate that the enzymatic model can find application for <it>in vitro </it>investigation of tumor hypoxia, despite limitations that need to be considered in the experimental design.</p

    P2 receptors are involved in the mediation of motivation-related behavior

    Get PDF
    The importance of purinergic signaling in the intact mesolimbic–mesocortical circuit of the brain of freely moving rats is reviewed. In the rat, an endogenous ADP/ATPergic tone reinforces the release of dopamine from the axon terminals in the nucleus accumbens as well as from the somatodendritic region of these neurons in the ventral tegmental area, as well as the release of glutamate, probably via P2Y1 receptor stimulation. Similar mechanisms may regulate the release of glutamate in both areas of the brain. Dopamine and glutamate determine in concert the activity of the accumbal GABAergic, medium-size spiny neurons thought to act as an interface between the limbic cortex and the extrapyramidal motor system. These neurons project to the pallidal and mesencephalic areas, thereby mediating the behavioral reaction of the animal in response to a motivation-related stimulus. There is evidence that extracellular ADP/ATP promotes goal-directed behavior, e.g., intention and feeding, via dopamine, probably via P2Y1 receptor stimulation. Accumbal P2 receptor-mediated glutamatergic mechanisms seem to counteract the dopaminergic effects on behavior. Furthermore, adaptive changes of motivation-related behavior, e.g., by chronic succession of starvation and feeding or by repeated amphetamine administration, are accompanied by changes in the expression of the P2Y1 receptor, thought to modulate the sensitivity of the animal to respond to certain stimuli

    Tumor DNA-methylome derived epigenetic fingerprint identifies HPV-negative head and neck patients at risk for locoregional recurrence after postoperative radiochemotherapy

    Get PDF
    Biomarkers with relevance for loco-regional therapy are needed in human papillomavirus negative aka HPV(-) head and neck squamous cell carcinoma (HNSCC). Based on the premise that DNA methylation pattern is highly conserved, we sought to develop a reliable and robust methylome-based classifier identifying HPV(-) HNSCC patients at risk for loco-regional recurrence (LR) and all-event progression after postoperative radiochemotherapy (PORT-C). The training cohort consisted of HPV-DNA negative HNSCC patients (n = 128) homogeneously treated with PORT-C in frame of the German Cancer Consortium-Radiation Oncology Group (DKTK-ROG) multicenter biomarker trial. DNA Methylation analysis was performed using Illumina 450 K and 850 K-EPIC microarray technology. The performance of the classifier was integrated with a series of biomarkers studied in the training set namely hypoxia-, 5-microRNA (5-miR), stem-cell gene-expression signatures and immunohistochemistry (IHC)-based immunological characterization of tumors (CD3/CD8/PD-L1/PD1). Validation occurred in an independent cohort of HPV(-) HNSCC patients, pooled from two German centers (n = 125). We identified a 38-methylation probe-based HPV(-) Independent Classifier of disease Recurrence (HICR) with high prognostic value for LR, distant metastasis and overall survival (P < 10-9 ). HICR remained significant after multivariate analysis adjusting for anatomical site, lymph node extracapsular extension (ECE) and size (T-stage). HICR high-risk tumors were enriched for younger patients with hypoxic tumors (15-gene signature) and elevated 5-miR score. After adjustment for hypoxia and 5-miR covariates, HICR maintained predicting all endpoints. HICR provides a novel mean for assessing the risk of LR in HPV(-) HNSCC patients treated with PORT-C and opens a new opportunity for biomarker-assisted stratification and therapy adaptation in these patients. Keywords: DNA methylation; disease recurrence; head and neck cancers; radiotherapy; stratificatio
    corecore