54 research outputs found

    Hypertension in autosomal dominant polycystic kidney disease: a meta-analysis

    Get PDF
    CONTEXT: Autosomal dominant polycystic kidney disease (ADPKD) is a common disorder that can cause hypertension during childhood, but the true prevalence of hypertension during childhood is not known. OBJECTIVE: We undertook a systematic review and meta-analysis to determine the prevalence of hypertension in children with ADPKD. DATA SOURCES: Systematic review of articles published between 1980 and 2015 in MEDLINE and EMBASE. STUDY SELECTION: Studies selected by two authors independently if reporting data on prevalence of hypertension in children and young persons aged 15 children. Articles were excluded if inadequate diagnostic criteria for hypertension were used. Studies with selection bias were included but analysed separately. DATA EXTRACTION: Data extracted on prevalence of hypertension, proteinuria and reduced renal function using standardised form. Meta-analysis was performed to calculate weighted mean prevalence. RESULTS: 903 articles were retrieved from our search; 14 studies met the inclusion criteria: 1 prospective randomised controlled trial; 8 prospective observational studies; and 5 retrospective cross-sectional studies. From 928 children with clinically confirmed ADPKD, 20% (95% CI 15% to 27%) were hypertensive. The estimated prevalence of proteinuria in children with ADPKD is 20% (8 studies; 95% CI 9% to 40%) while reduced renal function occurred in 8% (5 studies; 95% CI 2% to 26%). LIMITATIONS: Studies showed a high degree of methodological heterogeneity (I(2)=73.4%, τ(2)=0.3408, p<0.0001). Most studies did not use ambulatory blood pressure (BP) monitoring to diagnose hypertension. CONCLUSIONS: In this meta-analysis we estimate 20% of children with ADPKD have hypertension. In the population, many children with ADPKD are not under regular follow-up and remain undiagnosed. We recommend that all children at risk of ADPKD have regular BP measurement

    The role of thymosin-β4 in kidney disease

    Get PDF
    Therapies that modulate inflammation and fibrosis have the potential to reduce the morbidity and mortality associated with chronic kidney disease (CKD). A promising avenue may be manipulating thymosin-β4, a naturally occurring peptide, which is the major G-actin sequestering protein in mammalian cells and a regulator of inflammation and fibrosis. Thymosin-β4 is already being tested in clinical trials for heart disease and wound healing. This editorial outlines the evidence that thymosin-β4 may also have therapeutic benefit in CKD

    Antenatal biological models in the characterisation and research of congenital lower urinary tract disorders

    Get PDF
    Congenital lower urinary tract disorders are a family of diseases affecting both urinary storage and voiding as well as upstream kidney function. Current treatments include surgical reconstruction but many children still fail to achieve urethral continence or progress to chronic kidney disease. New therapies can only be achieved through undertaking research studies to enhance our understanding of congenital lower urinary tract disorders. Animal models form a critical component of this research, a corner of the triangle composed of human in-vitro studies and clinical research. We describe the current animal models for two rare congenital bladder disorders, posterior urethral valves (PUV) and bladder exstrophy (BE). We highlight important areas for researchers to consider when deciding which animal model to use to address particular research questions and outline the strengths and weaknesses of current models available for PUV and BE. Finally, we present ideas for refining animal models for PUV and BE in the future to stimulate future researchers and help them formulate their thinking when working in this field

    Modified Citrus Pectin Reduces Galectin-3 Expression and Disease Severity in Experimental Acute Kidney Injury

    Get PDF
    Galectin-3 is a beta-galactoside binding lectin with roles in diverse processes including proliferation, apoptosis, inflammation and fibrosis which are dependent on different domains of the molecule and subcellular distribution. Although galectin-3 is known to be upregulated in acute kidney injury, the relative importance of its different domains and functions are poorly understood in the underlying pathogenesis. Therefore we experimentally modulated galectin-3 in folic acid (FA)-induced acute kidney injury utilising modified citrus pectin (MCP), a derivative of pectin which can bind to the galectin-3 carbohydrate recognition domain thereby predominantly antagonising functions linked to this role. Mice were pre-treated with normal or 1% MCP-supplemented drinking water one week before FA injection. During the initial injury phase, all FA-treated mice lost weight whilst their kidneys enlarged secondary to the renal insult; these gross changes were significantly lessened in the MCP group but this was not associated with significant changes in galectin-3 expression. At a histological level, MCP clearly reduced renal cell proliferation but did not affect apoptosis. Later, during the recovery phase at two weeks, MCP-treated mice demonstrated reduced galectin-3 in association with decreased renal fibrosis, macrophages, proinflammatory cytokine expression and apoptosis. Other renal galectins, galectin-1 and -9, were unchanged. Our data indicates that MCP is protective in experimental nephropathy with modulation of early proliferation and later galectin-3 expression, apoptosis and fibrosis. This raises the possibility that MCP may be a novel strategy to reduce renal injury in the long term, perhaps via carbohydrate binding-related functions of galectin-3

    Loss of endogenous thymosin β4 accelerates glomerular disease

    Get PDF
    Glomerular disease is characterized by morphologic changes in podocyte cells accompanied by inflammation and fibrosis. Thymosin β4 regulates cell morphology, inflammation, and fibrosis in several organs and administration of exogenous thymosin β4 improves animal models of unilateral ureteral obstruction and diabetic nephropathy. However, the role of endogenous thymosin β4 in the kidney is unknown. We demonstrate that thymosin β4 is expressed prominently in podocytes of developing and adult mouse glomeruli. Global loss of thymosin β4 did not affect healthy glomeruli, but accelerated the severity of immune-mediated nephrotoxic nephritis with worse renal function, periglomerular inflammation, and fibrosis. Lack of thymosin β4 in nephrotoxic nephritis led to the redistribution of podocytes from the glomerular tuft toward the Bowman capsule suggesting a role for thymosin β4 in the migration of these cells. Thymosin β4 knockdown in cultured podocytes also increased migration in a wound-healing assay, accompanied by F-actin rearrangement and increased RhoA activity. We propose that endogenous thymosin β4 is a modifier of glomerular injury, likely having a protective role acting as a brake to slow disease progression

    Biomarkers of early stage osteoarthritis, rheumatoid arthritis and musculoskeletal health

    Get PDF
    This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.There is currently no biochemical test for detection of early-stage osteoarthritis (eOA). Tests for early-stage rheumatoid arthritis (eRA) such as rheumatoid factor (RF) and anti-cyclic citrullinated peptide (CCP) antibodies require refinement to improve clinical utility. We developed robust mass spectrometric methods to quantify citrullinated protein (CP) and free hydroxyproline in body fluids. We detected CP in the plasma of healthy subjects and surprisingly found that CP was increased in both patients with eOA and eRA whereas anti-CCP antibodies were predominantly present in eRA. A 4-class diagnostic algorithm combining plasma/serum CP, anti-CCP antibody and hydroxyproline applied to a cohort gave specific and sensitive detection and discrimination of eOA, eRA, other non-RA inflammatory joint diseases and good skeletal health. This provides a first-in-class plasma/serum-based biochemical assay for diagnosis and type discrimination of early-stage arthritis to facilitate improved treatment and patient outcomes, exploiting citrullinated protein and related differential autoimmunity

    Renal malformations associated with mutations of developmental genes: messages from the clinic

    Get PDF
    Renal tract malformations (RTMs) account for about 40% of children with end-stage renal failure. RTMs can be caused by mutations of genes normally active in the developing kidney and lower renal tract. Moreover, some RTMs occur in the context of multi-organ malformation syndromes. For these reasons, and because genetic testing is becoming more widely available, pediatric nephrologists should work closely with clinical geneticists to make genetic diagnoses in children with RTMs, followed by appropriate family counseling. Here we highlight families with renal cysts and diabetes, renal coloboma and Fraser syndromes, and a child with microdeletion of chromosome 19q who had a rare combination of malformations. Such diagnoses provide families with often long-sought answers to the question “why was our child born with kidney disease”. Precise genetic diagnoses will also help to define cohorts of children with RTMs for long-term clinical outcome studies

    The chrondoprotective actions of a natural product are associated with the activation of IGF-1 production by human chondrocytes despite the presence of IL-1β

    Get PDF
    BACKGROUND: Cartilage loss is a hallmark of arthritis and follows activation of catabolic processes concomitant with a disruption of anabolic pathways like insulin-like growth factor 1 (IGF-1). We hypothesized that two natural products of South American origin, would limit cartilage degradation by respectively suppressing catabolism and activating local IGF-1 anabolic pathways. One extract, derived from cat's claw (Uncaria guianensis, vincaria(®)), is a well-described inhibitor of NF-κB. The other extract, derived from the vegetable Lepidium meyenii (RNI 249), possessed an uncertain mechanism of action but with defined ethnomedical applications for fertility and vitality. METHODS: Human cartilage samples were procured from surgical specimens with consent, and were evaluated either as explants or as primary chondrocytes prepared after enzymatic digestion of cartilage matrix. Assessments included IGF-1 gene expression, IGF-1 production (ELISA), cartilage matrix degradation and nitric oxide (NO) production, under basal conditions and in the presence of IL-1β. RESULTS: RNI 249 enhanced basal IGF-1 mRNA levels in human chondrocytes by 2.7 fold, an effect that was further enhanced to 3.8 fold by co-administration with vincaria. Enhanced basal IGF-1 production by RNI 249 alone and together with vincaria, was confirmed in both explants and in primary chondrocytes (P <0.05). As expected, IL-1β exposure completely silenced IGF-1 production by chondrocytes. However, in the presence of IL-1β both RNI 249 and vincaria protected IGF-1 production in an additive manner (P <0.01) with the combination restoring chondrocyte IGF-1 production to normal levels. Cartilage NO production was dramatically enhanced by IL-1β. Both vincaria and RNI 249 partially attenuated NO production in an additive manner (p < 0.05). IL-1β – induced degradation of cartilage matrix was quantified as glycosaminoglycan release. Individually RNI 249 or vincaria, prevented this catabolic action of IL-1β. CONCLUSION: The identification of agents that activate the autocrine production of IGF-1 in cartilage, even in the face of suppressive pro-inflammatory, catabolic cytokines like IL-1β, represents a novel therapeutic approach to cartilage biology. Chondroprotection associated with prevention of the catabolic events and the potential for sustained anabolic activity with this natural product suggests that it holds significant promise in the treatment of debilitating joint diseases

    Corticosteroid-induced kidney dysmorphogenesis is associated with deregulated expression of known cystogenic molecules, as well as Indian hedgehog.

    No full text
    An intact genome is essential for kidney growth and differentiation, but less is known about whether, and how, an altered fetal milieu modifies these processes. Maternal low-protein diets perturb growth of the metanephros, the precursor of the mature kidney. Fetal corticosteroid overexposure may, in part, mediate this, because such diets downregulate placental 11beta-hydroxysteroid dehydrogenase-2, which degrades maternal corticosteroids. We report that glucocorticoid and mineralocorticoid receptors are expressed in mouse metanephric epithelia. Metanephroi maintained in organ culture with hydrocortisone (1.4 or 14 microM) underwent a dose-dependant deceleration of overall growth accompanied by cyst formation. Dexamethasone, a glucocorticoid, reproduced these outcomes, but aldosterone, a mineralocorticoid, did not. Hydrocortisone upregulated transcripts levels of cadherin-11 and downregulated prospero-related homeobox-1, hence mimicking reported effects of maternal low-protein diet. Hydrocortisone also upregulated transcripts encoding Na(+)-K(+)-ATPase subunits and ligands for the epidermal growth factor receptor, all previously implicated in renal cyst growth. The most upregulated transcript, however, was indian hedgehog, and the encoded protein was immunodetected in metanephric cysts. Furthermore, in the presence of hydrocortisone, cystogenesis, but not whole organ growth, was significantly reduced by cyclopamine, a drug downregulating hedgehog signaling. Finally, both glucocorticoid receptor and indian hedgehog proteins were detected by immunohistochemistry in cystic tubules within human dysplastic kidneys, consistent with the hypothesis that these molecules modify the severity of this congenital malformation. Collectively, our observations raise the possibility that enhanced hedgehog signaling is an important stimulus for renal cyst formation. Furthermore, pharmacological inhibition of this pathway should be explored as a potential therapy for renal cystic diseases, starting with relevant animal models
    corecore