88 research outputs found

    Rare single gene disorders:estimating baseline prevalence and outcomes worldwide

    Get PDF
    As child mortality rates overall are decreasing, non-communicable conditions, such as genetic disorders, constitute an increasing proportion of child mortality, morbidity and disability. To date, policy and public health programmes have focused on common genetic disorders. Rare single gene disorders are an important source of morbidity and premature mortality for affected families. When considered collectively, they account for an important public health burden, which is frequently under-recognised. To document the collective frequency and health burden of rare single gene disorders, it is necessary to aggregate them into large manageable groupings and take account of their family implications, effective interventions and service needs. Here, we present an approach to estimate the burden of these conditions up to 5 years of age in settings without empirical data. This approaches uses population-level demographic data, combined with assumptions based on empirical data from settings with data available, to provide population-level estimates which programmes and policy-makers when planning services can use

    Biomarkers of sustained systemic inflammation and microvascular dysfunction associated with post-COVID-19 condition symptoms at 24 months after SARS-CoV-2-infection

    Get PDF
    IntroductionComprehensive studies investigating sustained hypercoagulability, endothelial function, and/or inflammation in relation to post-COVID-19 (PCC) symptoms with a prolonged follow-up are currently lacking. Therefore, the aim of this single-centre cohort study was to investigate serum biomarkers of coagulation activation, microvascular dysfunction, and inflammation in relation to persisting symptoms two years after acute COVID-19.MethodsPatients diagnosed with acute SARS-CoV-2 infection between February and June 2020 were recruited. Outcome measures included the CORona Follow-Up (CORFU) questionnaire, which is based on an internationally developed and partially validated basic questionnaire on persistent PCC symptoms. Additionally, plasma biomarkers reflecting coagulation activation, endothelial dysfunction and systemic inflammation were measured.Results167 individuals were approached of which 148 (89%) completed the CORFU questionnaire. At 24 months after acute infection, fatigue was the most prevalent PCC symptom (84.5%). Over 50% of the patients experienced symptoms related to breathing, cognition, sleep or mobility; 30.3% still experienced at least one severe or extreme (4 or 5 on a 5-point scale) PCC symptom. Multiple correlations were found between several PCC symptoms and markers of endothelial dysfunction (endothelin-1 and von Willebrand factor) and systemic inflammation (Interleukin-1 Receptor antagonist). No positive correlations were found between PCC symptoms and coagulation complexes.DiscussionIn conclusion, this study shows that at 24 months after acute COVID-19 infection patients experience a high prevalence of PCC symptoms which correlate with inflammatory cytokine IL-1Ra and markers of endothelial dysfunction, especially endothelin-1. Our data may provide a rationale for the selection of treatment strategies for further clinical studies.Trial registrationThis study was performed in collaboration with the CORona Follow-Up (CORFU) study (NCT05240742, https://clinicaltrials.gov/ct2/show/ NCT05240742)

    Short and long term outcome of neonatal hyperglycemia in very preterm infants: a retrospective follow-up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperglycemia in premature infants is associated with increased morbidity and mortality, but data on long-term outcome are limited. We investigated the effects of neonatal hyperglycemia (blood glucose ≥ 10 mmol/l, treated with insulin for ≥ 12 hours) on growth and neurobehavioral outcome at 2 years of age.</p> <p>Methods</p> <p>Retrospective follow-up study at 2 years of age among 859 infants ≤32 weeks of gestation admitted to a tertiary neonatal center between January 2002 and December 2006. Thirty-three survivors treated with insulin for hyperglycemia and 63 matched controls without hyperglycemia were evaluated at a corrected age of 2 years. Outcome measures consisted of growth (weight, length, and head circumference) and neurological and behavioural development.</p> <p>Results</p> <p>66/859 (8%) infants ≤ 32 weeks of gestation developed hyperglycemia. Mortality during admission was 27/66 (41%) in the hyperglycemia group versus 62/793 (8%) in those without hyperglycemia (p < 0.001). Mortality was higher in infants with hyperglycemia with a birth weight ≤1,000 gram (p = 0.005) and/or gestational age of 24-28 weeks (p = 0.009) than in control infants without hyperglycemia. Sepsis was more prominent in infants with hyperglycemia and a birth weight of >1,000 gram (p = 0.002) and/or gestational age of 29-32 weeks (p = 0.009) than in control infants without hyperglycemia. Growth at 2 years of age was similar, but neurological and behavioural development was more frequently abnormal among those with neonatal hyperglycemia (p = 0.036 and 0.021 respectively).</p> <p>Conclusions</p> <p>Mortality was higher in very preterm infants with hyperglycemia treated with insulin during the neonatal period. At 2 years of age survivors showed normal growth, but a higher incidence of neurological and behavioural problems. Better strategies to manage hyperglycemia may improve outcome of very preterm infants.</p

    Biochemical evidence for the tyrosine involvement in cationic intermediate stabilization in mouse β-carotene 15, 15'-monooxygenase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-carotene 15,15'-monooxygenase (BCMO1) catalyzes the crucial first step in vitamin A biosynthesis in animals. We wished to explore the possibility that a carbocation intermediate is formed during the cleavage reaction of BCMO1, as is seen for many isoprenoid biosynthesis enzymes, and to determine which residues in the substrate binding cleft are necessary for catalytic and substrate binding activity. To test this hypothesis, we replaced substrate cleft aromatic and acidic residues by site-directed mutagenesis. Enzymatic activity was measured <it>in vitro </it>using His-tag purified proteins and <it>in vivo </it>in a β-carotene-accumulating <it>E. coli </it>system.</p> <p>Results</p> <p>Our assays show that mutation of either Y235 or Y326 to leucine (no cation-π stabilization) significantly impairs the catalytic activity of the enzyme. Moreover, mutation of Y326 to glutamine (predicted to destabilize a putative carbocation) almost eliminates activity (9.3% of wt activity). However, replacement of these same tyrosines with phenylalanine or tryptophan does not significantly impair activity, indicating that aromaticity at these residues is crucial. Mutations of two other aromatic residues in the binding cleft of BCMO1, F51 and W454, to either another aromatic residue or to leucine do not influence the catalytic activity of the enzyme. Our <it>ab initio </it>model of BCMO1 with β-carotene mounted supports a mechanism involving cation-π stabilization by Y235 and Y326.</p> <p>Conclusions</p> <p>Our data are consistent with the formation of a substrate carbocation intermediate and cation-π stabilization of this intermediate by two aromatic residues in the substrate-binding cleft of BCMO1.</p

    Additive Contributions of Two Manganese-Cored Superoxide Dismutases (MnSODs) to Antioxidation, UV Tolerance and Virulence of Beauveria bassiana

    Get PDF
    The biocontrol potential of entomopathogenic fungi against arthropod pests depends on not only their virulence to target pests but tolerance to outdoor high temperature and solar UV irradiation. Two Beauveria bassiana superoxide dismutases (SODs), BbSod2 and BbSod3, were characterized as cytosolic and mitochondrial manganese-cored isoenzymes (MnSODs) dominating the total SOD activity of the fungal entomopathogen under normal growth conditions. To probe their effects on the biocontrol potential of B. bassiana, ΔBbSod2, ΔBbSod3, and three hairpin RNA-interfered (RNAi) mutants with the transcripts of both BbSod2 and BbSod3 being suppressed by 91–97% were constructed and assayed for various phenotypic parameters in conjunction with ΔBbSod2/BbSod2, ΔBbSod3/BbSod3 and wild-type (control strains). In normal cultures, the knockout and RNAi mutants showed significant phenotypic alterations, including delayed sporulation, reduced conidial yields, and impaired conidial quality, but little change in colony morphology. Their mycelia or conidia became much more sensitive to menadione or H2O2-induced oxidative stress but had little change in sensitivity to the hyperosmolarity of NaCl and the high temperature of 45°C. Accompanied with the decreased antioxidative capability, conidial tolerances to UV-A and UV-B irradiations were reduced by 16.8% and 45.4% for ΔBbSod2, 18.7% and 44.7% for ΔBbSod3, and ∼33.7% and ∼63.8% for the RNAi mutants, respectively. Their median lethal times (LT50s) against Myzus persicae apterae, which were topically inoculated under a standardized spray, were delayed by 18.8%, 14.5% and 37.1%, respectively. Remarkably, the effects of cytosolic BbSod2 and mitochondrial BbSod3 on the phenotypic parameters important for the fungal bioncontrol potential were additive, well in accordance with the decreased SOD activities and the increased superoxide levels in the knockout and RNAi mutants. Our findings highlight for the first time that the two MnSODs co-contribute to the biocontrol potential of B. bassiana by mediating cellular antioxidative response
    • …
    corecore