56 research outputs found

    Lie Point Symmetries and Commuting Flows for Equations on Lattices

    Full text link
    Different symmetry formalisms for difference equations on lattices are reviewed and applied to perform symmetry reduction for both linear and nonlinear partial difference equations. Both Lie point symmetries and generalized symmetries are considered and applied to the discrete heat equation and to the integrable discrete time Toda lattice

    Lie point symmetries of differential--difference equations

    Full text link
    We present an algorithm for determining the Lie point symmetries of differential equations on fixed non transforming lattices, i.e. equations involving both continuous and discrete independent variables. The symmetries of a specific integrable discretization of the Krichever-Novikov equation, the Toda lattice and Toda field theory are presented as examples of the general method.Comment: 17 pages, 1 figur

    Lie Symmetries and Exact Solutions of First Order Difference Schemes

    Full text link
    We show that any first order ordinary differential equation with a known Lie point symmetry group can be discretized into a difference scheme with the same symmetry group. In general, the lattices are not regular ones, but must be adapted to the symmetries considered. The invariant difference schemes can be so chosen that their solutions coincide exactly with those of the original differential equation.Comment: Minor changes and journal-re

    Symmetries of the Continuous and Discrete Krichever-Novikov Equation

    No full text
    A symmetry classification is performed for a class of differential-difference equations depending on 9 parameters. A 6-parameter subclass of these equations is an integrable discretization of the Krichever-Novikov equation. The dimension n of the Lie point symmetry algebra satisfies 1≤n≤5. The highest dimensions, namely n=5 and n=4 occur only in the integrable cases

    Contact transformations for difference schemes

    Full text link
    We define a class of transformations of the dependent and independent variables in an ordinary difference scheme. The transformations leave the solution set of the system invariant and reduces to a group of contact transformations in the continuous limit. We use a simple example to show that the class is not empty and that such "contact transformations for discrete systems" genuinely exist

    Superintegrable Systems with a Third Order Integrals of Motion

    Full text link
    Two-dimensional superintegrable systems with one third order and one lower order integral of motion are reviewed. The fact that Hamiltonian systems with higher order integrals of motion are not the same in classical and quantum mechanics is stressed. New results on the use of classical and quantum third order integrals are presented in Section 5 and 6.Comment: To appear in J. Phys A: Mathematical and Theoretical (SPE QTS5

    Lie point symmetries of difference equations and lattices

    Full text link
    A method is presented for finding the Lie point symmetry transformations acting simultaneously on difference equations and lattices, while leaving the solution set of the corresponding difference scheme invariant. The method is applied to several examples. The found symmetry groups are used to obtain particular solutions of differential-difference equations

    Difference schemes with point symmetries and their numerical tests

    Full text link
    Symmetry preserving difference schemes approximating second and third order ordinary differential equations are presented. They have the same three or four-dimensional symmetry groups as the original differential equations. The new difference schemes are tested as numerical methods. The obtained numerical solutions are shown to be much more accurate than those obtained by standard methods without an increase in cost. For an example involving a solution with a singularity in the integration region the symmetry preserving scheme, contrary to standard ones, provides solutions valid beyond the singular point.Comment: 26 pages 7 figure

    Solutions to the Optical Cascading Equations

    Full text link
    Group theoretical methods are used to study the equations describing \chi^{(2)}:\chi^{(2)} cascading. The equations are shown not to be integrable by inverse scattering techniques. On the other hand, these equations do share some of the nice properties of soliton equations. Large families of explicit analytical solutions are obtained in terms of elliptic functions. In special cases, these periodic solutions reduce to localized ones, i.e., solitary waves. All previously known explicit solutions are recovered, and many additional ones are obtainedComment: 21 page
    corecore