278 research outputs found

    Quantum superintegrability and exact solvability in N dimensions

    Full text link
    A family of maximally superintegrable systems containing the Coulomb atom as a special case is constructed in N-dimensional Euclidean space. Two different sets of N commuting second order operators are found, overlapping in the Hamiltonian alone. The system is separable in several coordinate systems and is shown to be exactly solvable. It is solved in terms of classical orthogonal polynomials. The Hamiltonian and N further operators are shown to lie in the enveloping algebra of a hidden affine Lie algebra

    Third order superintegrable systems separating in polar coordinates

    Full text link
    A complete classification is presented of quantum and classical superintegrable systems in E2E_2 that allow the separation of variables in polar coordinates and admit an additional integral of motion of order three in the momentum. New quantum superintegrable systems are discovered for which the potential is expressed in terms of the sixth Painlev\'e transcendent or in terms of the Weierstrass elliptic function

    On the Hamiltonian structure of Ermakov systems

    Full text link
    A canonical Hamiltonian formalism is derived for a class of Ermakov systems specified by several different frequency functions. This class of systems comprises all known cases of Hamiltonian Ermakov systems and can always be reduced to quadratures. The Hamiltonian structure is explored to find exact solutions for the Calogero system and for a noncentral potential with dynamic symmetry. Some generalizations of these systems possessing exact solutions are also identified and solved

    Solvable Lie algebras with triangular nilradicals

    Full text link
    All finite-dimensional indecomposable solvable Lie algebras L(n,f)L(n,f), having the triangular algebra T(n) as their nilradical, are constructed. The number of nonnilpotent elements ff in L(n,f)L(n,f) satisfies 1fn11\leq f\leq n-1 and the dimension of the Lie algebra is dimL(n,f)=f+1/2n(n1)\dim L(n,f)=f+{1/2}n(n-1)

    On the linearization of the generalized Ermakov systems

    Full text link
    A linearization procedure is proposed for Ermakov systems with frequency depending on dynamic variables. The procedure applies to a wide class of generalized Ermakov systems which are linearizable in a manner similar to that applicable to usual Ermakov systems. The Kepler--Ermakov systems belong into this category but others, more generic, systems are also included
    corecore