31 research outputs found

    In Vitro Comparison of Novel Polyurethane Aortic Valves and Homografts After Seeding and Conditioning

    Get PDF
    The aim of the study was to compare the behavior of seeded cells on synthetic and natural aortic valve scaffolds during a low-flow conditioning period. Polyurethane (group A) and aortic homograft valves (group B) were consecutively seeded with human fibroblasts (FB), and endothelial cells (EC) using a rotating seeding device. Each seeding procedure was followed by an exposure to low pulsatile flow in a dynamic bioreactor for 5 days. For further analysis, samples were taken before and after conditioning. Scanning electron microscopy showed confluent cell layers in both groups. Immunohistochemical analysis showed the presence of EC and FB before and after conditioning as well as the establishment of an extracellular matrix (ECM) during conditioning. A higher expression of ECM was observed on the scaffolds' inner surface. Real-time polymerase chain reaction showed higher inflammatory response during the conditioning of homografts. Endothelialization caused a decrease in inflammatory gene expression. The efficient colonization, the establishment of an ECM, and the comparable inflammatory cell reaction to the scaffolds in both groups proved the biocompatibility of the synthetic scaffold. The newly developed bioreactor permits conditioning and cell adaption to shear stress. Therefore, polyurethane valve scaffolds may offer a new option for aortic valve replacement

    Use of a special bioreactor for the cultivation of a new flexible polyurethane scaffold for aortic valve tissue engineering

    Get PDF
    Background: Tissue engineering represents a promising new method for treating heart valve diseases. The aim of this study was evaluate the importance of conditioning procedures of tissue engineered polyurethane heart valve prostheses by the comparison of static and dynamic cultivation methods. Methods: Human vascular endothelial cells (ECs) and fibroblasts (FBs) were obtained from saphenous vein segments. Polyurethane scaffolds (n = 10) were primarily seeded with FBs and subsequently with ECs, followed by different cultivation methods of cell layers (A: static, B: dynamic). Group A was statically cultivated for 6 days. Group B was exposed to low flow conditions (t(1)=3 days at 750 ml/min, t(2)=2 days at 1100 ml/min) in a newly developed conditioning bioreactor. Samples were taken after static and dynamic cultivation and were analyzed by scanning electron microscopy (SEM), immunohistochemistry (IHC), and real time polymerase chain reaction (RT-PCR). Results: SEM results showed a high density of adherent cells on the surface valves from both groups. However, better cell distribution and cell behavior was detected in Group B. IHC staining against CD31 and TE-7 revealed a positive reaction in both groups. Higher expression of extracellular matrix (ICAM, Collagen IV) was observed in Group B. RT-PCR demonstrated a higher expression of inflammatory Cytokines in Group B. Conclusion: While conventional cultivation method can be used for the development of tissue engineered heart valves. Better results can be obtained by performing a conditioning step that may improve the tolerance of cells to shear stress. The novel pulsatile bioreactor offers an adequate tool for in vitro improvement of mechanical properties of tissue engineered cardiovascular prostheses

    In Vitro Comparison of Novel Polyurethane Aortic Valves and Homografts After Seeding and Conditioning

    Get PDF
    The aim of the study was to compare the behavior of seeded cells on synthetic and natural aortic valve scaffolds during a low-flow conditioning period. Polyurethane (group A) and aortic homograft valves (group B) were consecutively seeded with human fibroblasts (FB), and endothelial cells (EC) using a rotating seeding device. Each seeding procedure was followed by an exposure to low pulsatile flow in a dynamic bioreactor for 5 days. For further analysis, samples were taken before and after conditioning. Scanning electron microscopy showed confluent cell layers in both groups. Immunohistochemical analysis showed the presence of EC and FB before and after conditioning as well as the establishment of an extracellular matrix (ECM) during conditioning. A higher expression of ECM was observed on the scaffolds' inner surface. Real-time polymerase chain reaction showed higher inflammatory response during the conditioning of homografts. Endothelialization caused a decrease in inflammatory gene expression. The efficient colonization, the establishment of an ECM, and the comparable inflammatory cell reaction to the scaffolds in both groups proved the biocompatibility of the synthetic scaffold. The newly developed bioreactor permits conditioning and cell adaption to shear stress. Therefore, polyurethane valve scaffolds may offer a new option for aortic valve replacement

    Thyrocyte-specific G q /G 11 deficiency impairs thyroid function and prevents goiter development

    Get PDF
    The function of the adult thyroid is regulated by thyroid-stimulating hormone (TSH), which acts through a G protein-coupled receptor. Overactivation of the TSH receptor results in hyperthyroidism and goiter. The G s -mediated stimulation of adenylyl cyclase-dependent cAMP formation has been regarded as the principal intracellular signaling mechanism mediating the action of TSH. Here we show that the G q /G 11 -mediated signaling pathway plays an unexpected and essential role in the regulation of thyroid function. Mice lacking the α subunits of G q and G 11 specifically in thyroid epithelial cells showed severely reduced iodine organification and thyroid hormone secretion in response to TSH, and many developed hypothyroidism within months after birth. In addition, thyrocyte-specific Gα q /Gα 11 -deficient mice lacked the normal proliferative thyroid response to TSH or goitrogenic diet, indicating an essential role of this pathway in the adaptive growth of the thyroid gland. Our data suggest that G q /G 11 and their downstream effectors are promising targets to interfere with increased thyroid function and growth

    Definition of Estrogen Receptor Pathway Critical for Estrogen Positive Feedback to Gonadotropin-Releasing Hormone Neurons and Fertility

    Get PDF
    SummaryThe mechanisms through which estrogen regulates gonadotropin-releasing hormone (GnRH) neurons to control mammalian ovulation are unknown. We found that estrogen positive feedback to generate the preovulatory gonadotropin surge was normal in estrogen receptor β knockout (ERβ) mutant mice, but absent in ERα mutant mice. An ERα-selective compound was sufficient to generate positive feedback in wild-type mice. As GnRH neurons do not express ERα, estrogen positive feedback upon GnRH neurons must be indirect in nature. To establish the cell type responsible, we generated a neuron-specific ERα mutant mouse line. These mice failed to exhibit estrogen positive feedback, demonstrating that neurons expressing ERα are critical. We then used a GnRH neuron-specific Pseudorabies virus (PRV) tracing approach to show that the ERα-expressing neurons innervating GnRH neurons are located within rostral periventricular regions of the hypothalamus. These studies demonstrate that ovulation is driven by estrogen actions upon ERα-expressing neuronal afferents to GnRH neurons

    Use of a special bioreactor for the cultivation of a new flexible polyurethane scaffold for aortic valve tissue engineering

    Get PDF
    Background: Tissue engineering represents a promising new method for treating heart valve diseases. The aim of this study was evaluate the importance of conditioning procedures of tissue engineered polyurethane heart valve prostheses by the comparison of static and dynamic cultivation methods. Methods: Human vascular endothelial cells (ECs) and fibroblasts (FBs) were obtained from saphenous vein segments. Polyurethane scaffolds (n = 10) were primarily seeded with FBs and subsequently with ECs, followed by different cultivation methods of cell layers (A: static, B: dynamic). Group A was statically cultivated for 6 days. Group B was exposed to low flow conditions (t(1)=3 days at 750 ml/min, t(2)=2 days at 1100 ml/min) in a newly developed conditioning bioreactor. Samples were taken after static and dynamic cultivation and were analyzed by scanning electron microscopy (SEM), immunohistochemistry (IHC), and real time polymerase chain reaction (RT-PCR). Results: SEM results showed a high density of adherent cells on the surface valves from both groups. However, better cell distribution and cell behavior was detected in Group B. IHC staining against CD31 and TE-7 revealed a positive reaction in both groups. Higher expression of extracellular matrix (ICAM, Collagen IV) was observed in Group B. RT-PCR demonstrated a higher expression of inflammatory Cytokines in Group B. Conclusion: While conventional cultivation method can be used for the development of tissue engineered heart valves. Better results can be obtained by performing a conditioning step that may improve the tolerance of cells to shear stress. The novel pulsatile bioreactor offers an adequate tool for in vitro improvement of mechanical properties of tissue engineered cardiovascular prostheses

    Struktur - und Oberflächenkompatibilität von Werkstoffen

    No full text
    ISSN:0013-5585ISSN:1862-278

    Biokompatible Werkstoffe und Bauweisen - Ergebnisse und Ziele

    No full text
    ISSN:0013-5585ISSN:1862-278
    corecore