23,269 research outputs found

    Coorbital Satellites of Saturn: Congenital Formation

    Full text link
    Saturn is the only known planet to have coorbital satellite systems. In the present work we studied the process of mass accretion as a possible mechanism for coorbital satellites formation. The system considered is composed of Saturn, a proto-satellite and a cloud of planetesimals distributed in the coorbital region around a triangular Lagrangian point. The adopted relative mass for the proto-satellite was 10^-6 of Saturn's mass and for each planetesimal of the cloud three cases of relative mass were considered, 10^-14, 10^-13 and 10^-12 masses of Saturn. In the simulations each cloud of planetesimal was composed of 10^3, 5 x 10^3 or 10^4 planetesimals. The results of the simulations show the formation of coorbital satellites with relative masses of the same order of those found in the saturnian system (10^-13 - 10^-9). Most of them present horseshoe type orbits, but a significant part is in tadpole orbit around L_4 or L_5. Therefore, the results indicate that this is a plausible mechanism for the formation of coorbital satellites.Comment: 10 pages, 9 figures, 4 table

    Cycles of construing in radicalization and deradicalization: a study of Salafist Muslims.

    Get PDF
    © Taylor & Francis Group, LLC.This article explores radicalization and deradicalization by considering the experiences of six young Tunisian people who had become Salafist Muslims. Their responses to narrative interviews and repertory grid technique are considered from a personal construct perspective, revealing processes of construing and reconstruing, as well as relevant aspects of the structure and content of their construct systems. In two cases, their journeys involved not only radicalization but self-deradicalization, and their experiences are drawn on to consider implications for deradicalization.Peer reviewedFinal Accepted Versio

    Stable retrograde orbits around the triple system 2001 SN263

    Full text link
    The NEA 2001 SN263 is the target of the ASTER MISSION - First Brazilian Deep Space Mission. Araujo et al. (2012), characterized the stable regions around the components of the triple system for the planar and prograde cases. Knowing that the retrograde orbits are expected to be more stable, here we present a complementary study. We now considered particles orbiting the components of the system, in the internal and external regions, with relative inclinations between 90∘<I⩽180∘90^{\circ}< I \leqslant180^{\circ}, i.e., particles with retrograde orbits. Our goal is to characterize the stable regions of the system for retrograde orbits, and then detach a preferred region to place the space probe. For a space mission, the most interesting regions would be those that are unstable for the prograde cases, but stable for the retrograde cases. Such configuration provide a stable region to place the mission probe with a relative retrograde orbit, and, at the same time, guarantees a region free of debris since they are expected to have prograde orbits. We found that in fact the internal and external stable regions significantly increase when compared to the prograde case. For particles with e=0e=0 and I=180∘I=180^{\circ}, we found that nearly the whole region around Alpha and Beta remain stable. We then identified three internal regions and one external region that are very interesting to place the space probe. We present the stable regions found for the retrograde case and a discussion on those preferred regions. We also discuss the effects of resonances of the particles with Beta and Gamma, and the role of the Kozai mechanism in this scenario. These results help us understand and characterize the stability of the triple system 2001 SN263 when retrograde orbits are considered, and provide important parameters to the design of the ASTER mission.Comment: 11 pages, 8 figures. Accepted for publication in MNRAS - 2015 March 1

    Terrestrial Planet Formation in a protoplanetary disk with a local mass depletion: A successful scenario for the formation of Mars

    Full text link
    Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e ∼\sim 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodies in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.Comment: Accepted for publication in The Astrophysical Journa

    Unusual hyperfine interaction of Dirac electrons and NMR spectroscopy in graphene

    Full text link
    Theory of nuclear magnetic resonance (NMR) in graphene is presented. The canonical form of the electron-nucleus hyperfine interaction is strongly modified by the linear electronic dispersion. The NMR shift and spin-lattice relaxation time are calculated as function of temperature, chemical potential, and magnetic field and three distinct regimes are identified: Fermi-, Dirac-gas, and extreme quantum limit behaviors. A critical spectrometer assessment shows that NMR is within reach for fully 13C enriched graphene of reasonable size.Comment: 5 pages, 3 figure

    A Compound model for the origin of Earth's water

    Full text link
    One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which, local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In view of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water-delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using D/H ratio, finding possible relative contributions from each source, focusing on planets formed in the habitable zone. We find that the compound model play an important role by showing more advantage in the amount and time of water-delivery in Earth-like planets.Comment: Accepted for publication in The Astrophysical Journa

    Localization and its consequences for quantum walk algorithms and quantum communication

    Get PDF
    The exponential speed-up of quantum walks on certain graphs, relative to classical particles diffusing on the same graph, is a striking observation. It has suggested the possibility of new fast quantum algorithms. We point out here that quantum mechanics can also lead, through the phenomenon of localization, to exponential suppression of motion on these graphs (even in the absence of decoherence). In fact, for physical embodiments of graphs, this will be the generic behaviour. It also has implications for proposals for using spin networks, including spin chains, as quantum communication channels.Comment: 4 pages, 1 eps figure. Updated references and cosmetic changes for v
    • …
    corecore