564 research outputs found

    No quantum advantage for nonlocal computation

    Full text link
    We investigate the problem of "nonlocal" computation, in which separated parties must compute a function with nonlocally encoded inputs and output, such that each party individually learns nothing, yet together they compute the correct function output. We show that the best that can be done classically is a trivial linear approximation. Surprisingly, we also show that quantum entanglement provides no advantage over the classical case. On the other hand, generalized (i.e. super-quantum) nonlocal correlations allow perfect nonlocal computation. This gives new insights into the nature of quantum nonlocality and its relationship to generalised nonlocal correlations.Comment: 4 page

    On the Distributed Compression of Quantum Information

    Get PDF
    The problem of distributed compression for correlated quantum sources is considered. The classical version of this problem was solved by Slepian and Wolf, who showed that distributed compression could take full advantage of redundancy in the local sources created by the presence of correlations. Here it is shown that, in general, this is not the case for quantum sources, by proving a lower bound on the rate sum for irreducible sources of product states which is stronger than the one given by a naive application of Slepian–Wolf. Nonetheless, strategies taking advantage of correlation do exist for some special classes of quantum sources. For example, Devetak and Winter demonstrated the existence of such a strategy when one of the sources is classical. Optimal nontrivial strategies for a different extreme, sources of Bell states, are presented here. In addition, it is explained how distributed compression is connected to other problems in quantum information theory, including information-disturbance questions, entanglement distillation and quantum error correction

    On the quantum chromatic number of a graph

    Get PDF
    We investigate the notion of quantum chromatic number of a graph, which is the minimal number of colours necessary in a protocol in which two separated provers can convince an interrogator with certainty that they have a colouring of the graph. After discussing this notion from first principles, we go on to establish relations with the clique number and orthogonal representations of the graph. We also prove several general facts about this graph parameter and find large separations between the clique number and the quantum chromatic number by looking at random graphs. Finally, we show that there can be no separation between classical and quantum chromatic number if the latter is 2, nor if it is 3 in a restricted quantum model; on the other hand, we exhibit a graph on 18 vertices and 44 edges with chromatic number 5 and quantum chromatic number 4.Comment: 7 pages, 1 eps figure; revtex4. v2 has some new references; v3 furthe small improvement

    A rapid change in virulence gene expression during the transition from the intestinal lumen into tissue promotes systemic dissemination of Salmonella.

    Get PDF
    Bacterial pathogens causing systemic disease commonly evolve from organisms associated with localized infections but differ from their close relatives in their ability to overcome mucosal barriers by mechanisms that remain incompletely understood. Here we investigated whether acquisition of a regulatory gene, tviA, contributed to the ability of Salmonella enterica serotype Typhi to disseminate from the intestine to systemic sites of infection during typhoid fever. To study the consequences of acquiring a new regulator by horizontal gene transfer, tviA was introduced into the chromosome of S. enterica serotype Typhimurium, a closely related pathogen causing a localized gastrointestinal infection in immunocompetent individuals. TviA repressed expression of flagellin, a pathogen associated molecular pattern (PAMP), when bacteria were grown at osmotic conditions encountered in tissue, but not at higher osmolarity present in the intestinal lumen. TviA-mediated flagellin repression enabled bacteria to evade sentinel functions of human model epithelia and resulted in increased bacterial dissemination to the spleen in a chicken model. Collectively, our data point to PAMP repression as a novel pathogenic mechanism to overcome the mucosal barrier through innate immune evasion

    A Salmonella virulence factor activates the NOD1/NOD2 signaling pathway.

    Get PDF
    The invasion-associated type III secretion system (T3SS-1) of Salmonella enterica serotype Typhimurium (S. Typhimurium) activates the transcription factor NF-κB in tissue culture cells and induces inflammatory responses in animal models through unknown mechanisms. Here we show that bacterial delivery or ectopic expression of SipA, a T3SS-1-translocated protein, led to the activation of the NOD1/NOD2 signaling pathway and consequent RIP2-mediated induction of NF-κB-dependent inflammatory responses. SipA-mediated activation of NOD1/NOD2 signaling was independent of bacterial invasion in vitro but required an intact T3SS-1. In the mouse colitis model, SipA triggered mucosal inflammation in wild-type mice but not in NOD1/NOD2-deficient mice. These findings implicate SipA-driven activation of the NOD1/NOD2 signaling pathway as a mechanism by which the T3SS-1 induces inflammatory responses in vitro and in vivo

    On the speed of fluctuations around thermodynamic equilibrium

    Full text link
    We study the speed of fluctuation of a quantum system around its thermodynamic equilibrium state, and show that the speed will be extremely small for almost all times in typical thermodynamic cases. The setting considered here is that of a quantum system couples to a bath, both jointly described as a closed system. This setting, is the same as the one considered in [N. Linden et al., Phys. Rev. E 79:061103 (2009)] and the ``thermodynamic equilibrium state'' refers to a situation that includes the usual thermodynamic equilibrium case, as well as far more general situations
    corecore