45 research outputs found

    Decolonisation of MRSA, S. aureus and E. coli by Cold-Atmospheric Plasma Using a Porcine Skin Model In Vitro

    Get PDF
    In the last twenty years new antibacterial agents approved by the U.S. FDA decreased whereas in parallel the resistance situation of multi-resistant bacteria increased. Thus, community and nosocomial acquired infections of resistant bacteria led to a decrease in the efficacy of standard therapy, prolonging treatment time and increasing healthcare costs. Therefore, the aim of this work was to demonstrate the applicability of cold atmospheric plasma for decolonisation of Gram-positive (Methicillin-resistant Staphylococcus aureus (MRSA), Methicillin-sensitive Staphylococcus aureus) and Gram-negative bacteria (E. coli) using an ex vivo pig skin model. Freshly excised skin samples were taken from six month old female pigs (breed: Pietrain). After application of pure bacteria on the surface of the explants these were treated with cold atmospheric plasma for up to 15 min. Two different plasma devices were evaluated. A decolonisation efficacy of 3 log10 steps was achieved already after 6 min of plasma treatment. Longer plasma treatment times achieved a killing rate of 5 log10 steps independently from the applied bacteria strains. Histological evaluations of untreated and treated skin areas upon cold atmospheric plasma treatment within 24 h showed no morphological changes as well as no significant degree of necrosis or apoptosis determined by the TUNEL-assay indicating that the porcine skin is still vital. This study demonstrates for the first time that cold atmospheric plasma is able to very efficiently kill bacteria applied to an intact skin surface using an ex vivo porcine skin model. The results emphasize the potential of cold atmospheric plasma as a new possible treatment option for decolonisation of human skin from bacteria in patients in the future without harming the surrounding tissue

    Cloning and expression of Pseudomonas aeruginosa flagellin in Escherichia coli.

    No full text
    The flagellin gene was isolated from a Pseudomonas aeruginosa PAO1 genomic bank by conjugation into a PA103 Fla- strain. Flagellin DNA was transferred from motile recipient PA103 Fla+ cells by transformation into Escherichia coli. We show that transformed E. coli expresses flagellin protein. Export of flagellin to the E. coli cell surface was suggested by positive colony blots of unlysed cells and by isolation of flagellin protein from E. coli supernatants

    Tyrosine phosphate in a- and b-type flagellins of Pseudomonas aeruginosa.

    No full text
    Both a- and b-type purified flagellins from a number of Pseudomonas aeruginosa strains grown in radiolabeled phosphate were shown to be phosphorylated. Analysis of partial acid-hydrolyzed flagellar filaments revealed that 32Pi was in phosphotyrosine. Three 32P-phosphopeptides apparently are common to a- and b-type flagellins, but a fourth peptide was found only in b-type hydrolysates. P. aeruginosa PAK flagellin, containing only two tyrosines, both in the variable region, was readily labeled and gave the same peptide pattern as flagellins containing additional tyrosines. Data showing that a- and b-type flagellins gave positive immunoblots with antiphosphotyrosine monoclonal antibody and that release of P(i) by alkaline phosphatase occurred indicated that unmodified tyrosine phosphate exists in flagellin
    corecore