390 research outputs found

    Low-energy electron scattering by tetrahydrofuran

    Get PDF
    Cross sections for elastic scattering of low-energy electrons by tetrahydrofuran, a prototype for the furanose ring found in the backbone of DNA, have been measured and calculated over a wide energy range, with an emphasis on energies below 6 eV, where previous data are scarce. The measurements employ a thin-aperture version of the relative-flow method, while the calculations employ the Schwinger multichannel method with an extensive treatment of polarization effects. Comparisons with earlier results, both experimental and theoretical, are presented and discussed. A proper accounting for the strong permanent electric dipole of tetrahydrofuran is found to be essential to obtaining reliable cross sections, especially at energies below 5 eV

    Atomic spectral-product representations of molecular electronic structure: metric matrices and atomic-product composition of molecular eigenfunctions

    Get PDF
    Recent progress is reported in development of ab initio computational methods for the electronic structures of molecules employing the many-electron eigenstates of constituent atoms in spectral-product forms. The approach provides a universal atomic-product description of the electronic structure of matter as an alternative to more commonly employed valence-bond- or molecular-orbital-based representations. The Hamiltonian matrix in this representation is seen to comprise a sum over atomic energies and a pairwise sum over Coulombic interaction terms that depend only on the separations of the individual atomic pairs. Overall electron antisymmetry can be enforced by unitary transformation when appropriate, rather than as a possibly encumbering or unnecessary global constraint. The matrix representative of the antisymmetrizer in the spectral-product basis, which is equivalent to the metric matrix of the corresponding explicitly antisymmetric basis, provides the required transformation to antisymmetric or linearly independent states after Hamiltonian evaluation. Particular attention is focused in the present report on properties of the metric matrix and on the atomic-product compositions of molecular eigenstates as described in the spectral-product representations. Illustrative calculations are reported for simple but prototypically important diatomic (H_2, CH) and triatomic (H_3, CH_2) molecules employing algorithms and computer codes devised recently for this purpose. This particular implementation of the approach combines Slater-orbital-based one- and two-electron integral evaluations, valence-bond constructions of standard tableau functions and matrices, and transformations to atomic eigenstate-product representations. The calculated metric matrices and corresponding potential energy surfaces obtained in this way elucidate a number of aspects of the spectral-product development, including the nature of closure in the representation, the general redundancy or linear dependence of its explicitly antisymmetrized form, the convergence of the apparently disparate atomic-product and explicitly antisymmetrized atomic-product forms to a common invariant subspace, and the nature of a chemical bonding descriptor provided by the atomic-product compositions of molecular eigenstates. Concluding remarks indicate additional studies in progress and the prognosis for performing atomic spectral-product calculations more generally and efficiently

    Measurement and Calculation of Absolute Single and Multiple Charge Exchange Cross Sections for Fe^(q+) Ions Impacting H_2O

    Get PDF
    Charge exchange (CE) plays a fundamental role in the collisions of solar- and stellar-wind ions with lunar and planetary exospheres, comets, and circumstellar clouds. Reported herein are absolute cross sections for single, double, triple, and quadruple CE of Fe^(q+) (q = 5-13) ions with H_2O at a collision energy of 7q keV. One measured value of the pentuple CE is also given for Fe^(9+) ions. An electron cyclotron resonance ion source is used to provide currents of the highly charged Fe ions. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental cross sections are compared with new results of the n-electron classical trajectory Monte Carlo approximation. The radiative and non-radiative cascades following electron transfers are approximated using scaled hydrogenic transition probabilities and scaled Auger rates. Also given are estimates of cross sections for single capture, and multiple capture followed by autoionization, as derived from the extended overbarrier model. These estimates are based on new theoretical calculations of the vertical ionization potentials of H_2O up to H_2O^(10+)

    Collisions of low-energy electrons with isopropanol

    Get PDF
    We report measured and calculated cross sections for elastic scattering of low-energy electrons by isopropanol (propan-2-ol). The experimental data were obtained using the relative flow technique with helium as the standard gas and a thin aperture as the collimating target gas source, which permits use of this method without the restrictions imposed by the relative flow pressure conditions on helium and the unknown gas. The differential cross sections were measured at energies of 1.5, 2, 3, 5, 6, 8, 10, 15, 20, and 30 eV and for scattering angles from 10∘ to 130∘. The cross sections were computed over the same energy range employing the Schwinger multichannel method in the static-exchange plus polarization approximation. Agreement between theory and experiment is very good. The present data are compared with previously calculated and measured results for n-propanol, the other isomer of C_3H_7OH. Although the integral and momentum transfer cross sections for the isomers are very similar, the differential cross sections show a strong isomeric effect: In contrast to the f-wave behavior seen in scattering by n-propanol, d-wave behavior is observed in the cross sections of isopropanol. These results corroborate our previous observations in electron collisions with isomers of C_4H_9OH

    Prayer as Interpersonal Coping in the Lives of Mothers with HIV

    Get PDF
    The spirituality of 22 mothers diagnosed with HIV was explored through face-to-face interviews and revealed that 95% of the mothers pray. Active prayers (e.g., talking to God by adoring, thanking, confessing, and supplicating) were more frequently reported than receptive prayers (e.g., quietly listening to God, being open, surrendering). Supplicatory or petitionary prayers for help and health were the most frequent type of prayer, and adoration was the least frequent. The majority of mothers in the sample perceived prayer as a positive coping mechanism associated with outcomes such as: support, positive attitude/affect, and peace. Overall, results supported expanding the boundary conditions of the interpersonal coping component of the Social Interaction Model (Derlega & Barbee, 1998) to include the spiritual dimension of prayer

    Empirical Investigation of a Model of Sexual Minority Specific and General Risk Factors for Intimate Partner Violence Among Lesbian Women

    Get PDF
    Objective: This study proposed and tested the first conceptual model of sexual minority specific (discrimination, internalized homophobia) and more general risk factors (perpetrator and partner alcohol use, anger, relationship satisfaction) for intimate partner violence among partnered lesbian women. Method: Selfidentified lesbian women (N = 1,048) were recruited from online market research panels. Participants completed an online survey that included measures of minority stress, anger, alcohol use and alcohol-related problems, relationship satisfaction, psychological aggression, and physical violence. Results: The model demonstrated good fit and significant links from sexual minority discrimination to internalized homophobia and anger, from internalized homophobia to anger and alcohol problems, and from alcohol problems to intimate partner violence. Partner alcohol use predicted partner physical violence. Relationship dissatisfaction was associated with physical violence via psychological aggression. Physical violence was bidirectional. Conclusions: Minority stress, anger, alcohol use, and alcohol-related problems play an important role in perpetration of psychological aggression and physical violence in lesbian women\u27s intimate partner relationships. The results of this study provide evidence of potentially modifiable sexual minority specific and more general risk factors for lesbian women\u27s partner violence

    Low-energy electron scattering from methanol and ethanol

    Get PDF
    Measured and calculated differential cross sections for elastic (rotationally unresolved) electron scattering from two primary alcohols, methanol (CH3OH) and ethanol (C2H5OH), are reported. The measurements are obtained using the relative flow method with helium as the standard gas and a thin aperture as the collimating target gas source. The relative flow method is applied without the restriction imposed by the relative flow pressure conditions on helium and the unknown gas. The experimental data were taken at incident electron energies of 1, 2, 5, 10, 15, 20, 30, 50, and 100 eV and for scattering angles of 5°–130°. There are no previous reports of experimental electron scattering differential cross sections for CH3OH and C2H5OH in the literature. The calculated differential cross sections are obtained using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons. Comparison between theory and experiment shows that theory is able to describe low-energy electron scattering from these polyatomic targets quite well

    Elastic electron scattering from 3-hydroxytetrahydrofuran: experimental and theoretical studies

    Get PDF
    We report the results of measurements and calculations for elastic electron scattering from 3-hydroxytetrahydrofuran (C4H8O2). The measurements are performed with a crossed electron-target beam apparatus and the absolute cross-sections are determined using the relative flow technique. The calculations are carried out using the Schwinger multichannel method in the static-exchange plus polarization (SEP) approximation. A set of angular differential cross-sections (DCS) is provided at five incident energies (6.5, 8, 10, 15 and 20 eV) over an angular range of 20–130°, and the energy dependence of the elastic DCS at a scattering angle of 120° is also presented. Integral elastic and elastic momentum transfer cross-sections have also been derived and calculated. The results are compared with those of recent measurements and calculations for the structurally similar molecule tetrahydrofuran (C4H8O)
    • …
    corecore