8 research outputs found

    Preferential corrosion of coherent twin boundaries in pure nickel under cathodic charging

    No full text
    We describe an investigation of microstructure in pure nickel (Ni) after cathodic charging in an aqueous electrolyte. Intergranular corrosion occurs on the sample surface and takes the form of long trenches along coherent twin boundaries (CTBs): sites that have often been considered especially resistant to corrosion. Integrating electron backscatter diffraction and x-ray computed tomography, we show that the trenches are formed by the growth and eventual overlap of isolated conical cavities, which, in turn, are aligned with ⟹110⟩-type directions within CTB planes. The ⟹110⟩-type orientation is consistent with cavity initiation at high-energy, symmetric incoherent twin boundary facets within CTB planes. Our observations show that, far from being always corrosion resistant, CTBs are especially susceptible to intergranular corrosion under some conditions.Published versio

    Hierarchical Structured Cu/Ni/TiO<sub>2</sub> Nanocomposites as Electrodes for Lithium-Ion Batteries

    No full text
    The electrochemical performance of anodes made of transition metal oxides (TMOs) in lithium-ion batteries (LIBs) often suffers from their chemical and mechanical instability. In this research, a novel electrode with a hierarchical current collector for TMO active materials is successfully fabricated. It consists of porous nickel as current collector on a copper substrate. The copper has vertically aligned microchannels. Anatase titanium dioxide (TiO<sub>2</sub>) nanoparticles of ∌100 nm are directly synthesized and cast on the porous Ni using a one-step process. Characterization indicates that this electrode exhibits excellent performance in terms of capacity, reliable rate, and long cyclic stability. The maximum insertion coefficient for the reaction product of Li<sub><i>x</i></sub>TiO<sub>2</sub> is ∌0.85, a desirable value as an anode of LIBs. Cross-sectional SEM and EDS analysis confirmed the uniform and stable distribution of nanosized TiO<sub>2</sub> nanoparticles inside the Ni microchannels during cycling. This is due to the synergistic effect of nano-TiO<sub>2</sub> and the hierarchical Cu/Ni current collector. The advantages of the Cu/Ni/TiO<sub>2</sub> anode include enhanced activity of electrochemical reactions, shortened lithium ion diffusion pathways, ultrahigh specific surface area, effective accommodation of volume changes of TiO<sub>2</sub> nanoparticles, and optimized routes for electrons transport

    MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction

    Get PDF
    The conversion of oxygen-rich biomass into hydrocarbon fuels requires efficient hydrodeoxygenation catalysts during the upgrading process. However, traditionally prepared CoMoS2 catalysts, although efficient for hydrodesulfurization, are not appropriate due to their poor activity, sulfur loss and rapid deactivation at elevated temperature. Here, we report the synthesis of MoS2 monolayer sheets decorated with isolated Co atoms that bond covalently to sulfur vacancies on the basal planes that, when compared with conventionally prepared samples, exhibit superior activity, selectivity and stability for the hydrodeoxygenation of 4-methylphenol to toluene. This higher activity allows the reaction temperature to be reduced from the typically used 300 °C to 180 °C and thus allows the catalysis to proceed without sulfur loss and deactivation. Experimental analysis and density functional theory calculations reveal a large number of sites at the interface between the Co and Mo atoms on the MoS2 basal surface and we ascribe the higher activity to the presence of sulfur vacancies that are created local to the observed Co–S–Mo interfacial sites

    Atomic‐precision tailoring of Au–Ag core–shell composite nanoparticles for direct electrochemical‐Plasmonic hydrogen evolution in water splitting

    No full text
    Traditionally, bandgap materials are a prerequisite to photocatalysis since they can harness a reasonable range of the solar spectrum. However, the high impedance across the bandgap and the low concentration of intrinsic charge carriers have limited their energy conversion. By contrast, metallic nanoparticles possess a sea of free electrons that can effectively promote the transition to the excited state for reactions. Here, an atomic layer of a bimetallic concoction of silver–gold shells is precisely fabricated onto an Au core via a sonochemical dispersion approach to form a core–shell of Au–Ag that exploits the wide availability of excited states of Ag while maintaining an efficient localized surface plasmon resonance (LSPR) of Au. Catalytic results demonstrate that this mix of Ag and Au can convert solar energy to hydrogen at high efficiency with an increase of 112.5% at an optimized potential of −0.5 V when compared to light-off conditions under the electrochemical LSPR. This outperforms the commercial Pt catalysts by 62.1% with a hydrogen production rate of 1870 ”mol g−1 h−1 at room temperature. This study opens a new route for tuning the range of light capture of hydrogen evolution reaction catalysts using fabricated core–shell material through the combination of LSPR with electrochemical means

    MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction

    No full text
    The conversion of oxygen-rich biomass into hydrocarbon fuels requires efficient hydrodeoxygenation catalysts during the upgrading process. However, traditionally prepared CoMoS2 catalysts, although efficient for hydrodesulfurization, are not appropriate due to their poor activity, sulfur loss and rapid deactivation at elevated temperature. Here, we report the synthesis of MoS2 monolayer sheets decorated with isolated Co atoms that bond covalently to sulfur vacancies on the basal planes that, when compared with conventionally prepared samples, exhibit superior activity, selectivity and stability for the hydrodeoxygenation of 4-methylphenol to toluene. This higher activity allows the reaction temperature to be reduced from the typically used 300 °C to 180 °C and thus allows the catalysis to proceed without sulfur loss and deactivation. Experimental analysis and density functional theory calculations reveal a large number of sites at the interface between the Co and Mo atoms on the MoS2 basal surface and we ascribe the higher activity to the presence of sulfur vacancies that are created local to the observed Co–S–Mo interfacial sites
    corecore