63 research outputs found

    Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles

    Get PDF
    We report a simple and effective way to control the heat generation of a magnetic colloid under alternate magnetic fields by changing the shell composition of bimagnetic core-shell Fe 3 O 4 /Zn x Co 1-x Fe 2 O 4 nanoparticles. The core-shell structure constitutes a magnetically-coupled biphase system, with an effective anisotropy that can be tuned by the substitution of Co 2+ by Zn 2+ ions in the shell. Magnetic hyperthermia experiments of nanoparticles dispersed in hexane and butter oil showed that the magnetic relaxation is dominated by Brown relaxation mechanism in samples with higher anisotropy (i.e., larger concentration of Co within the shell) yielding high specific power absorption values in low viscosity media as hexane. Increasing the Zn concentration of the shell, diminishes the magnetic anisotropy, which results in a change to a Néel relaxation that dominates the process when the nanoparticles are dispersed in a high-viscosity medium. We demonstrate that tuning the Zn contents at the shell of these exchange-coupled core/shell nanoparticles provides a way to control the magnetic anisotropy without loss of saturation magnetization. This ability is an essential prerequisite for most biomedical applications, where high viscosities and capturing mechanisms are present. This journal i

    Magnetic hyperthermia experiments with magnetic nanoparticles in clarified butter oil and paraffin: A thermodynamic analysis

    Get PDF
    In specific power absorption models for magnetic fluid hyperthermia (MFH) experiments, the magnetic relaxation time of nanoparticles (NPs) is known to be a fundamental descriptor of the heating mechanisms. The relaxation time is mainly determined by the interplay between the magnetic properties of NPs and the rheological properties of NPs’ environment. Although the role of magnetism in MFH has been extensively studied, the thermal properties of the NP medium and their changes during MFH experiments have been underrated so far. Herein, we show that ZnxFe3-xO4 NPs dispersed through different media with phase transition in the temperature range of experiment as clarified butter oil (CBO) and paraffin. These systems show nonlinear behavior of the heating rate within the temperature range of MFH experiments. For CBO, a fast increase at ~306 K is associated with changes in the viscosity (¿(T)) and specific heat (cp(T)) of the medium at its melting temperature. This increment in the heating rate takes place around 318 K for paraffin. The magnetic and morphological characterization of NPs together with the observed agglomeration of NPs above 306 and 318 K for CBO and paraffin, respectively, indicate that the fast increase in MFH curves could not be associated with the change in the magnetic relaxation mechanism, with Neél relaxation being dominant. In fact, successive experimental runs performed up to temperatures below and above the CBO and paraffin melting points resulted in different MFH curves due to agglomeration of NPs driven by magnetic field inhomogeneity during the experiments. Our results highlight the relevance of the thermodynamic properties of the system NP-medium for an accurate measurement of the heating efficiency for in vitro and in vivo environments, where the thermal properties are largely variable within the temperature window of MFH experiments

    Adjusting the Neel relaxation time of Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia

    Get PDF
    In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Neel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of similar to 1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn + Co) at%) changes from 33 to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. Experiments of MFH of 0.1 wt% of these particles dispersed in water, in Dulbecco modified Eagles minimal essential medium, and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W g(-1), when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that require smaller particle sizes

    Effects of Zn Substitution in the Magnetic and Morphological Properties of Fe-Oxide-Based Core-Shell Nanoparticles Produced in a Single Chemical Synthesis

    Get PDF
    Magnetic, compositional, and morphological properties of Zn-Fe-oxide core-shell bimagnetic nanoparticles were studied for three samples with 0.00, 0.06, and 0.10 Zn/Fe ratios, as obtained from particle-induced X-ray emission analysis. The bimagnetic nanoparticles were produced in a one-step synthesis by the thermal decomposition of the respective acetylacetonates. The nanoparticles present an average particle size between 25 and 30 nm as inferred from transmission electron microscopy (TEM). High-resolution TEM images clearly show core-shell morphology for the particles in all samples. The core is composed by an antiferromagnetic (AFM) phase with a Wüstite (Fe1-yO) structure, whereas the shell is composed by a ZnxFe3-xO4 ferrimagnetic (FiM) spinel phase. Despite the low solubility of Zn in the Wüstite, electron energy-loss spectroscopy analysis indicates that Zn is distributed almost homogeneously in the whole nanoparticle. This result gives information on the formation mechanisms of the particle, indicating that the Wüstite is formed first, and the superficial oxidation results in the FiM ferrite phase with similar Zn concentration than the core. Magnetization and in-field Mössbauer spectroscopy of the Zn-richest nanoparticles indicate that the AFM phase is strongly coupled to the FiM structure of the ferrite shell, resulting in a bias field (HEB) appearing below TNFeO, with HEB values that depend on the core-shell relative proportion. Magnetic characterization also indicates a strong magnetic frustration for the samples with higher Zn concentration, even at low temperatures

    Collectivity at N=40 in neutron-rich Cr64

    Get PDF
    Be9-induced inelastic scattering of Fe62,64,66 and Cr60,62,64 was performed at intermediate beam energies. Excited states in Cr64 were measured for the first time. Energies and population patterns of excited states in these neutron-rich Fe and Cr nuclei are compared and interpreted in the framework of large-scale shell-model calculations in different model spaces. Evidence for increased collectivity and for distinct structural changes between the neighboring Fe and Cr isotopic chains near N=40 is presented

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS

    Get PDF
    During the LIGO and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type

    Acute Transient Complete Bilateral Ptosis with Brain Stem Signs

    No full text
    Decreased vision; Inability to open eyes; Dysarthria; Left hemiparesis; Left facial weakness; DrowsinessA 78-year old female with atrial fibrillation due to arteriosclerotic hypertensive heart disease developed a sudden onset of decreased vision due to total inability to open her eyes.Her hospital course was characterized by episodes of extreme drowsiness from which she could be roused with relative ease. On viewing a page of printed sentences she ignored the left side of the page.StrokeN/AN/

    Responsible Science, Engineering and Education for Water Resource Recovery and Circularity

    No full text
    Water resource recovery is central to the circular economy framework. It underlies the transition of environmental engineering from pollution prevention to responsible innovation for sustainable systems engineering. In order to speed this transition, resource recovery and circularity need integration into new higher education curricula to train the next generation of young professionals. However, training of new concepts requires the development of new course materials and books, while integrating substantial illustrations and problems on circularity and resource recovery in new editions of existing textbooks in environmental science and engineering. Moreover, university–utility–industry partnerships are important mechanisms to bridge theoretical fundamentals to concepts for engineering practice, and to promote knowledge exchange and technology adoption between practitioners and academics. Interactive platforms should be designed to facilitate the integration and development of resource recovery and circularity concepts from science and practice into education. Consensus was built on this perspective article from interaction with the members of the Association of Environmental Engineering and Science Professors in a workshop that we organized at the AEESP Research and Education Conference 2017. Overall, this paper gives actionable roadmaps to (i) apprehend how new science and technological findings need to get integrated to sustain resource recovery and circularity in practice, along with the fact that (ii) skills sets can be engineered with relatively minor changes to existing lecture material that will have maximal impact on the scope of the thought material. It lays out (iii) how partnership with engineering practitioners can make a lecture more vivid by giving students reasoning for why the learned material is important, and (iv) how a platform for an integrated science, education, and practice can deliver them with concrete tools for practical implementation for benefits at community level
    corecore