1,524 research outputs found

    Comparison of subgingival bacterial sampling with oral lavage for detection and quantification of periodontal pathogens by real-time polymerase chain reaction

    Get PDF
    Background: Saliva has been studied for the presence of subgingival pathogens in periodontitis patients. With the anaerobic culture technique, the discrepancy between salivary recovery and subgingival presence has been significant, which makes this approach not suitable for practical use in the microbial diagnosis of periodontitis patients. The real-time polymerase chain reaction (PCR) technique represents a very sensitive technique to detect and quantify bacterial pathogens. The aim of the study was to compare the presence and numbers of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythensis, Prevotella intermedia, and Micromonas micros in subgingival plaque and mouthwash samples by the anaerobic culture and real-time PCR techniques. Methods: Pooled subgingival plaque samples and 10-ml mouthwash samples were collected from 21 adult patients with periodontitis and analyzed by quantitative anaerobic culture and real-time PCR for A. actinomycetemcomitans, P. gingivalis, T. forsythensis, P. intermedia, and M. micros. Results: The detection frequency of A. actinomycetemcomitans, P. gingivalis, and T. forsythensis in subgingival plaque was identical by culture and real-time PCR and was higher for P. intermedia and M. micros by real-time PCR. The highest detection frequencies for the target bacteria were found in mouthwash samples by real-time PCR. The additional value of the real-time PCR to detect target bacteria was 38% for P. gingivalis, 73% for T. forsythensis, 77% for P. intermedia, and 71% for M. micros. The sensitivity to detect target species in mouthwash by real-time PCR was 100% for all test species except for P. intermedia (93.8%). Conclusions: Rapid detection and quantification of periodontal pathogens in mouthwash samples are possible by real-time PCR. The procedure is significantly less time-consuming than subgingival sampling with paper points. This approach to detect major periodontal pathogens in mouthwash samples may simplify microbial diagnosis in periodontitis patients and may be used to monitor periodontal treatment

    Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology

    Get PDF
    Issues related to peri-implant disease were discussed. It was observed that the most common lesions that occur, i.e. peri-implant mucositis and peri-implantitis are caused by bacteria. While the lesion of peri-implant mucositis resides in the soft tissues, peri-implantitis also affects the supporting bone. Peri-implant mucositis occurs in about 80% of subjects (50% of sites) restored with implants, and peri-implantitis in between 28% and 56% of subjects (12-40% of sites). A number of risk indicators were identified including (i) poor oral hygiene, (ii) a history of periodontitis, (iii) diabetes and (iv) smoking. It was concluded that the treatment of peri-implant disease must include anti-infective measures. With respect to peri-implant mucositis, it appeared that non-surgical mechanical therapy caused the reduction in inflammation (bleeding on probing) but also that the adjunctive use of antimicrobial mouthrinses had a positive effect. It was agreed that the outcome of non-surgical treatment of peri-implantitis was unpredictable. The primary objective of surgical treatment in peri-implantitis is to get access to the implant surface for debridement and decontamination in order to achieve resolution of the inflammatory lesion. There was limited evidence that such treatment with the adjunctive use of systemic antibiotics could resolve a number of peri-implantitis lesions. There was no evidence that so-called regenerative procedures had additional beneficial effects on treatment outcome

    There's no place like OM:Vesicular sorting and secretion of the peptidylarginine deiminase of Porphyromonas gingivalis

    Get PDF
    The oral pathogen Porphyromonas gingivalis is one of the major periodontal agents and it has been recently hailed as a potential cause of the autoimmune disease rheumatoid arthritis. In particular, the peptidylarginine deiminase enzyme of P. gingivalis (PPAD) has been implicated in the citrullination of certain host proteins and the subsequent appearance of antibodies against citrullinated proteins, which might play a role in the etiology of rheumatoid arthritis. The aim of this study was to investigate the extracellular localization of PPAD in a large panel of clinical P. gingivalis isolates. Here we show that all isolates produced PPAD. In most cases PPAD was abundantly present in secreted outer membrane vesicles (OMVs) that are massively produced by P. gingivalis, and to minor extent in a soluble secreted state. Interestingly, a small subset of clinical isolates showed drastically reduced levels of the OMV-bound PPAD and secreted most of this enzyme in the soluble state. The latter phenotype is strictly associated with a lysine residue at position 373 in PPAD, implicating the more common glutamine residue at this position in PPAD association with OMVs. Further, one isolate displayed severely restricted vesiculation. Together, our findings show for the first time that neither the major association of PPAD with vesicles, nor P. gingivalis vesiculation per se, are needed for P. gingivalis interactions with the human host

    Comparative In Vitro Resistance of Human Periodontal Bacterial Pathogens to Tinidazole and Four Other Antibiotics

    Get PDF
    The in vitro resistance of selected red/orange complex periodontal pathogens to tinidazole was compared with four other antibiotics. Subgingival biofilm samples from 88 adults with severe periodontitis were anaerobically incubated on enriched Brucella blood agar with and without supplementation with tinidazole (16 mg/L), metronidazole (16 mg/L), amoxicillin (8 mg/L), doxycycline (4 mg/L), or clindamycin (4 mg/L). Growth of Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia/nigrescens, Parvimonas micra, Fusobacterium nucleatum, Streptococcus constellatus, or Campylobacter rectus on antibiotic-supplemented plates indicated their in vitro antibiotic resistance. Tinidazole inhibited all test species, except P. intermedia/nigrescens, P. micra, and S. constellatus in 3.8%, 10.2%, and 88.9% of species-positive patients, respectively. Significantly fewer patients yielded tinidazole-resistant test species, and had significantly lower subgingival proportions of tinidazole-resistant organisms, than patients with amoxicillin, doxycycline, or clindamycin-resistant species, but not those with metronidazole-resistant strains. Joint in vitro species resistance to tinidazole and amoxicillin, or metronidazole and amoxicillin, was rare. Tinidazole performed in vitro similar to metronidazole, and markedly better than amoxicillin, doxycycline, or clindamycin, against fresh clinical isolates of red/orange complex periodontal pathogens. As a result of its similar antimicrobial spectrum, and more convenient once-a-day oral dosing, tinidazole should be considered in place of metronidazole for systemic periodontitis drug therapy

    Antibiotic Resistance of Human Periodontal Pathogen Parvimonas micra Over 10 Years

    Get PDF
    Changes were evaluated over 10 years in the in vitro resistance of human periodontopathic strains of Parvimonas micra to four antibiotics. Subgingival biofilms culture positive for P. micra from 300 United States adults with severe periodontitis in 2006, and from a similar group of 300 patients in 2016, were plated onto anaerobically incubated enriched Brucella blood agar alone, or supplemented with either doxycycline (4 mg/L), clindamycin (4 mg/L), amoxicillin (8 mg/L), or metronidazole (16 mg/L). P. micra growth on antibiotic-supplemented media indicated in vitro resistance to the evaluated antibiotic concentration. P. micra resistance was significantly more frequent among patients in 2016, as compared to 2006, for doxycycline (11.3% vs. 0.3% patients; 37.7-fold increase), and clindamycin (47.3% vs. 2.0% patients; 23.7-fold increase) (both p 0.05). No P. micra isolates in 2006 or 2016 were jointly resistant in vitro to both amoxicillin and metronidazole. The alarming increases in subgingival P. micra resistance to doxycycline and clindamycin raise serious questions about the empiric use of these antibiotics, either locally or systemically, in the treatment of United States periodontitis patients harboring subgingival P. micra

    Systemic antibiotic therapy as an adjunct to non-surgical peri-implantitis treatment:A single-blind RCT

    Get PDF
    Aim The aim of this single-blind RCT was to evaluate the adjunctive clinical and microbiological effect of systemic amoxicillin (AMX) plus metronidazole (MTZ) to non-surgical treatment of peri-implantitis. Material and methods Patients (N = 62) with peri-implantitis were randomly assigned to receive full-mouth mechanical debridement and decontamination and use of chlorhexidine (control group) or combined with antibiotic therapy of AMX/MTZ (test group). Primary outcome was change in bleeding score from baseline (T-0) to 3-month follow-up (T-3). Secondary parameters were plaque, suppuration, PPD, CAL, bone level, microbiology, adverse events and need for additional surgery. Data were analysed with linear multiple regression analysis. Results 57 patients with 122 implants completed 3-month follow-up. Both groups showed major clinical improvements at T-3 in both peri-implant and periodontal parameters. However, no significant differences were observed between both groups for any of the primary or secondary parameters. Conclusions Systemic antibiotic therapy of AMX/MTZ does not improve clinical and microbiological outcomes of non-surgical peri-implantitis treatment and should not be routinely recommended. Although complete disease resolution may be difficult to achieve, meticulously performed full-mouth non-surgical treatment, achieving a high level of daily oral hygiene and healthy periodontal tissues, can significantly improve the starting position of the subsequent (surgical) peri-implantitis treatment phase
    corecore