946 research outputs found
Community rotorcraft air transportation benefits and opportunities
Information about rotorcraft that will assist community planners in assessing and planning for the use of rotorcraft transportation in their communities is provided. Information useful to helicopter researchers, manufacturers, and operators concerning helicopter opportunities and benefits is also given. Three primary topics are discussed: the current status and future projections of rotorcraft technology, and the comparison of that technology with other transportation vehicles; the community benefits of promising rotorcraft transportation opportunities; and the integration and interfacing considerations between rotorcraft and other transportation vehicles. Helicopter applications in a number of business and public service fields are examined in various geographical settings
Studies on the Toxicity and Efficacy of a New Amino Acid Solution in Pediatric Parenteral Nutrition
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142223/1/jpen0368.pd
Empirical Storm-Time Correction to the International Reference Ionosphere Model E-Region Electron and Ion Density Parameterizations Using Observations from TIMED/SABER
The response of the ionospheric E-region to solar-geomagnetic storms can be characterized using observations of infrared 4.3 micrometers emission. In particular, we utilize nighttime TIMED/SABER measurements of broadband 4.3 micrometers limb emission and derive a new data product, the NO+(v) volume emission rate, which is our primary observation-based quantity for developing an empirical storm-time correction the IRI E-region electron density. In this paper we describe our E-region proxy and outline our strategy for developing the empirical storm model. In our initial studies, we analyzed a six day storm period during the Halloween 2003 event. The results of this analysis are promising and suggest that the ap-index is a viable candidate to use as a magnetic driver for our model
Recommended from our members
Status of the Variable Momentum Compaction Storage Ring Experiment in Spear
Ionospheric E-Region Response to Solar-Geomagnetic Storms Observed by TIMED/SABER and Application to IRI Storm-Model Development
The large thermospheric infrared radiance enhancements observed from the TIMED/SABER experiment during recent solar storms provide an exciting opportunity to study the influence of solar-geomagnetic disturbances on the upper atmosphere and ionosphere. In particular, nighttime enhancements of 4.3 um emission, due to vibrational excitation and radiative emission by NO+, provide an excellent proxy to study and analyze the response of the ionospheric E-region to auroral electron dosing and storm-time enhancements to the E-region electron density. In this paper we give a status report of on-going work on model and data analysis methodologies of deriving NO+ 4.3 um volume emission rates, a proxy for the storm-time E-region response, and the approach for deriving an empirical storm-time correction to International Reference Ionosphere (IRI) E-region NO+ and electron densities
Synchrotron radiation from a charge moving along a helical orbit inside a dielectric cylinder
The radiation emitted by a charged particle moving along a helical orbit
inside a dielectric cylinder immersed into a homogeneous medium is
investigated. Expressions are derived for the electromagnetic potentials,
electric and magnetic fields, and for the spectral-angular distribution of
radiation in the exterior medium. It is shown that under the Cherenkov
condition for dielectric permittivity of the cylinder and the velocity of the
particle image on the cylinder surface, strong narrow peaks are present in the
angular distribution for the number of radiated quanta. At these peaks the
radiated energy exceeds the corresponding quantity for a homogeneous medium by
some orders of magnitude. The results of numerical calculations for the angular
distribution of radiated quanta are presented and they are compared with the
corresponding quantities for radiation in a homogeneous medium. The special
case of relativistic charged particle motion along the direction of the
cylinder axis with non-relativistic transverse velocity (helical undulator) is
considered in detail. Various regimes for the undulator parameter are
discussed. It is shown that the presence of the cylinder can increase
essentially the radiation intensity.Comment: 18 pages, 8 EPS figure
Influence of Solar-Geomagnetic Disturbances on SABER Measurements of 4.3 Micrometer Emission and the Retrieval of Kinetic Temperature and Carbon Dioxide
Thermospheric infrared radiance at 4.3 micrometers is susceptible to the influence of solar-geomagnetic disturbances. Ionization processes followed by ion-neutral chemical reactions lead to vibrationally excited NO(+) (i.e., NO(+)(v)) and subsequent 4.3 micrometer emission in the ionospheric E-region. Large enhancements of nighttime 4.3 m emission were observed by the TIMED/SABER instrument during the April 2002 and October-November 2003 solar storms. Global measurements of infrared 4.3 micrometer emission provide an excellent proxy to observe the nighttime E-region response to auroral dosing and to conduct a detailed study of E-region ion-neutral chemistry and energy transfer mechanisms. Furthermore, we find that photoionization processes followed by ion-neutral reactions during quiescent, daytime conditions increase the NO(+) concentration enough to introduce biases in the TIMED/SABER operational processing of kinetic temperature and CO2 data, with the largest effect at summer solstice. In this paper, we discuss solar storm enhancements of 4.3 micrometer emission observed from SABER and assess the impact of NO(+)(v) 4.3 micrometer emission on quiescent, daytime retrievals of Tk/CO2 from the SABER instrument
Effect of Community of Residence on Neurobehavioral Development in Infants and Young Children in a Flower-Growing Region of Ecuador
OBJECTIVE: In this study we compared neurobehavioral development in Ecuadoran children living in two communities with high potential for exposure to organophosphate (OP) and carbamate pesticides to that of children living in a community with low potential for exposure. METHODS: Women residing in the study communities who had a child 3–61 months of age completed a questionnaire about maternal and child health and sociodemographic characteristics. The Ages and Stages Questionnaire (ASQ) was administered to each child (n = 283). Growth measurements and a hemoglobin finger-prick blood test were obtained. We used multiple linear regressions to evaluate associations between community of residence and delayed development, adjusting for child health status and other characteristics of the home environment. RESULTS: Children 3–23 months of age who resided in high-exposure communities scored lower on gross motor (p = 0.002), fine motor (p = 0.06), and socioindividual (p-value = 0.02) skills, compared with children in the low-exposure community. The effect of residence in a high-exposure community on gross motor skill development was greater for stunted children compared with non-stunted children (p = < 0.001) in the same age group of 3–23 months. Children 24–61 months of age residing in the high-exposure communities scored significantly lower on gross motor skills compared with children of similar ages residing in the low-exposure community (p = 0.06). CONCLUSIONS: Residence in communities with high potential for exposure to OP and carbamate pesticides was associated with poorer neurobehavioral development of the child even after controlling for major determinants of delayed development. Malnourished populations may be particularly vulnerable to neurobehavioral effects of pesticide exposure
Affirming Basic Psychological Needs Promotes Mental Well-Being During the COVID-19 Outbreak
We tested if challenges to basic psychological needs (BPN) for autonomy, competence, and relatedness during the COVID-19 pandemic undermine people’s mental well-being. Furthermore, we tested if an intervention, affirmation of these psychological needs, enhances mental well-being. Results of Study 1 ( N = 153) showed that higher levels of satisfaction of BPN were related to higher well-being during the COVID-19 outbreak. In Study 2 ( N = 215), we employed an online intervention enhancing these BPN. We found increased mental well-being through bolstered relatedness in particular. The intervention also decreased perceived stress. Both studies showed that mental well-being during the COVID-19 pandemic is positively related to the ability to work as usual and the number of people contacted via phone or internet but not in person
- …