4 research outputs found

    Telomerase expression abrogates rapamycin-induced irreversible growth arrest of uterine fibroid smooth muscle cells.

    No full text
    Uterine fibroids are the most common solid tumors found in women of reproductive age. It has been reported that deregulation of the mammalian target of rapamycin (mTOR) pathway plays an important role in the etiology of leiomyoma. Here, we investigated the effect of rapamycin, an inhibitor of mTORC1, on the growth of primary fibroid smooth muscle cells (fSMCs) and human telomerase reverse transcriptase (hTERT)-transduced and immortalized fSMCs. With the primary fSMCs, a 24-hour treatment with rapamycin was sufficient to trigger a growth arrest that was not reversible upon drug removal. By contrast, the growth inhibitory effect of rapamycin on the hTERT-transduced fSMCs was readily reversible, as these cells resumed proliferation upon the withdrawal of the drug. These results suggest that rapamycin-induced irreversible growth arrest of fSMCs is dependent on the senescence barrier that is abrogated by the ectopic expression of telomerase

    Telomerase Expression Abrogates Rapamycin-Induced Irreversible Growth Arrest of Uterine Fibroid Smooth Muscle Cells

    No full text
    Uterine fibroids are the most common solid tumors found in women of reproductive age. It has been reported that deregulation of the mammalian target of rapamycin (mTOR) pathway plays an important role in the etiology of leiomyoma. Here, we investigated the effect of rapamycin, an inhibitor of mTORC1, on the growth of primary fibroid smooth muscle cells (fSMCs) and human telomerase reverse transcriptase (hTERT)-transduced and immortalized fSMCs. With the primary fSMCs, a 24-hour treatment with rapamycin was sufficient to trigger a growth arrest that was not reversible upon drug removal. By contrast, the growth inhibitory effect of rapamycin on the hTERT-transduced fSMCs was readily reversible, as these cells resumed proliferation upon the withdrawal of the drug. These results suggest that rapamycin-induced irreversible growth arrest of fSMCs is dependent on the senescence barrier that is abrogated by the ectopic expression of telomerase
    corecore