31 research outputs found

    Synthesis and Structural Characterization of Lithium, Potassium, Magnesium, and Heavier Group 14 Metal Complexes Derived from 2ā€‘Quinolyl-Linked (Thiophosphorano)methane

    No full text
    The synthesis and structural characterization of lithium, magnesium, potassium, and a series of low-valent group 14 metal compounds derived from the novel 2-quinolyl-linked phosphoranosulfide CH<sub>2</sub>(<sup><i>i</i></sup>Pr<sub>2</sub>Pī—»S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2) (<b>3</b>) are reported. The monoanionic thiophosphinoyl lithium complex [LiĀ­(Et<sub>2</sub>O)Ā­{CHĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Pā€“S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2)}]<sub>2</sub> (<b>4</b>) and magnesium complex [MgĀ­{CHĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Pā€“S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2)}<sub>2</sub>] (<b>5</b>) have been prepared from the reaction of <b>3</b> with 1 equiv of <sup><i>n</i></sup>BuLi or 0.5 equiv of <sup><i>n</i></sup>Bu<sub>2</sub>Mg in THF. Metathesis of <b>4</b> with 2 equiv of K<sup><i>t</i></sup>BuO afforded the corresponding polymeric thiophosphinoyl potassium complex [KĀ­{CHĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Pā€“S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2)}]<sub><i>n</i></sub> (<b>6</b>). The metathesis reaction of <b>4</b> with GeCl<sub>2</sub>Ā·(dioxane) and PbCl<sub>2</sub> afforded the ā€œopen-boxā€ 1,3-digermacyclobutane [GeĀ­{Ī¼<sub>2</sub>-CĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Pī—»S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>9</b>) and ā€œtwisted-stepā€ 1,3-diplumbacyclobutane [PbĀ­{Ī¼<sub>2</sub>-CĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Pī—»S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>10</b>), respectively. Reaction of <b>3</b> with 1 equiv of MĀ­{NĀ­(SiMe<sub>3</sub>)<sub>2</sub>}<sub>2</sub> (M = Sn, Pb) afforded the corresponding ā€œopen-boxā€ 1,3-distannacyclobutane [SnĀ­{Ī¼<sub>2</sub>-CĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Pī—»S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>11</b>) and [PbĀ­{Ī¼<sub>2</sub>-CĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Pī—»S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>12</b>), respectively. The structures of <b>3</b>ā€“<b>6</b> and <b>9</b>ā€“<b>12</b> have been determined by X-ray crystallography

    Synthesis and Structural Characterization of Lithium, Potassium, Magnesium, and Heavier Group 14 Metal Complexes Derived from 2ā€‘Quinolyl-Linked (Thiophosphorano)methane

    No full text
    The synthesis and structural characterization of lithium, magnesium, potassium, and a series of low-valent group 14 metal compounds derived from the novel 2-quinolyl-linked phosphoranosulfide CH<sub>2</sub>(<sup><i>i</i></sup>Pr<sub>2</sub>Pī—»S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2) (<b>3</b>) are reported. The monoanionic thiophosphinoyl lithium complex [LiĀ­(Et<sub>2</sub>O)Ā­{CHĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Pā€“S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2)}]<sub>2</sub> (<b>4</b>) and magnesium complex [MgĀ­{CHĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Pā€“S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2)}<sub>2</sub>] (<b>5</b>) have been prepared from the reaction of <b>3</b> with 1 equiv of <sup><i>n</i></sup>BuLi or 0.5 equiv of <sup><i>n</i></sup>Bu<sub>2</sub>Mg in THF. Metathesis of <b>4</b> with 2 equiv of K<sup><i>t</i></sup>BuO afforded the corresponding polymeric thiophosphinoyl potassium complex [KĀ­{CHĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Pā€“S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2)}]<sub><i>n</i></sub> (<b>6</b>). The metathesis reaction of <b>4</b> with GeCl<sub>2</sub>Ā·(dioxane) and PbCl<sub>2</sub> afforded the ā€œopen-boxā€ 1,3-digermacyclobutane [GeĀ­{Ī¼<sub>2</sub>-CĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Pī—»S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>9</b>) and ā€œtwisted-stepā€ 1,3-diplumbacyclobutane [PbĀ­{Ī¼<sub>2</sub>-CĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Pī—»S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>10</b>), respectively. Reaction of <b>3</b> with 1 equiv of MĀ­{NĀ­(SiMe<sub>3</sub>)<sub>2</sub>}<sub>2</sub> (M = Sn, Pb) afforded the corresponding ā€œopen-boxā€ 1,3-distannacyclobutane [SnĀ­{Ī¼<sub>2</sub>-CĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Pī—»S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>11</b>) and [PbĀ­{Ī¼<sub>2</sub>-CĀ­(<sup><i>i</i></sup>Pr<sub>2</sub>Pī—»S)Ā­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>12</b>), respectively. The structures of <b>3</b>ā€“<b>6</b> and <b>9</b>ā€“<b>12</b> have been determined by X-ray crystallography

    Synthesis and Structural Characterization of a Tin Analogue of Allene

    No full text
    The reaction of [MgCĀ­(PPh<sub>2</sub>ī—»S)<sub>2</sub>(THF)]<sub>2</sub> (<b>1</b>; THF = tetrahydrofuran) with 1 equiv of SnCl<sub>4</sub> in THF afforded a novel tin analogue of allene [SnĀ­{CĀ­(PPh<sub>2</sub>ī—»S)<sub>2</sub>}<sub>2</sub>] (<b>2</b>). The structure of compound <b>2</b> has been characterized by X-ray crystallography and NMR spectroscopy

    Synthesis and Structural Characterization of Base-Stabilized Oligomeric Heterovinylidenes

    No full text
    Metalation of the (iminophosphoranyl)Ā­phosphine PPh<sub>2</sub>CH<sub>2</sub>(PPh<sub>2</sub>ī—»NSiMe<sub>3</sub>) (<b>1</b>) with an equimolar amount of <i>n</i>-BuLi afforded the monolithium salt [LiĀ­{CHĀ­(PPh<sub>2</sub>)Ā­(PPh<sub>2</sub>ī—»NSiMe<sub>3</sub>)}Ā­(THF)<sub>2</sub>] (<b>2</b>). The reaction of <b>2</b> with GeCl<sub>2</sub>Ā·1,4-dioxane has led to the formation of a germavinylene moiety, which trimerized to form a new heterocyclic cage compound, [{(PPh<sub>2</sub>ī—»NSiMe<sub>3</sub>)Ā­(PPh<sub>2</sub>)Ā­Cī—»Ge:}Ā­{(PPh<sub>2</sub>ī—»NSiMe<sub>3</sub>)Ā­(PPh<sub>2</sub>)Ā­C}<sub>2</sub>Geā†’Ge:] (<b>3</b>). A similar reaction of the lithium methanide complex <b>2</b> with SnCl<sub>2</sub> afforded the stannavinylidene moiety, which underwent a ā€œhead-to-tailā€ cycloaddition to form a stable 1,3-distannacyclobutane, <b>4</b>. A trapping reaction of <b>4</b> with diiron nonacarbonyl gave the novel iron stannavinylidene complex <b>5</b>. The solid-state structure analysis of <b>5</b> reveals that it contains two stannavinylidene moieties bonded in a Snā€“P ā€œhead-to-tailā€ fashion, with one of the tinĀ­(II) centers coordinating to a FeĀ­(CO)<sub>4</sub> moiety. The X-ray structures of <b>2</b>ā€“<b>5</b> have been determined by X-ray crystallography. In addition, the dynamic behavior of <b>5</b> has been studied by means of variable-temperature <sup>31</sup>P and <sup>119</sup>Sn NMR spectroscopy

    Synthesis and Structural Characterization of Metallogermylenes, Cp-Substituted Germylene, and a Germanium(II)-Borane Adduct from Pyridyl-1-azaallyl Germanium(II) Chloride

    No full text
    The reaction of [{NĀ­(SiMe<sub>3</sub>)Ā­CĀ­(Ph)Ā­CĀ­(SiMe<sub>3</sub>)Ā­(C<sub>5</sub>H<sub>4</sub>N-2)}Ā­GeCl] (<b>1</b>) with NaĀ­[MĀ­(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)Ā­(CO)<sub>3</sub>]Ā·2DME (M = Mo, W) afforded the metallogermylenes [{NĀ­(SiMe<sub>3</sub>)Ā­CĀ­(Ph)Ā­CĀ­(SiMe<sub>3</sub>)Ā­(C<sub>5</sub>H<sub>4</sub>N-2)}Ā­Ge-MĀ­(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)Ā­(CO)<sub>3</sub>] (M = Mo (<b>2</b>), W (<b>3</b>)). Compounds <b>2</b> and <b>3</b> have been characterized by X-ray crystallography and NMR and IR spectroscopy. Structural analyses of compounds <b>2</b> and <b>3</b> are consistent with the presence of lone-pair electrons at the germaniumĀ­(II) center. The Geā€“Mo and Geā€“W bond distances of 2.875(1) and 2.852(1) ƅ are consistent with Geā€“metal single bonds. The chlorogermylene <b>1</b> was also used in the synthesis of a substituted germylene, [{NĀ­(SiMe<sub>3</sub>)Ā­CĀ­(Ph)Ā­CĀ­(SiMe<sub>3</sub>)Ā­(C<sub>5</sub>H<sub>4</sub>N-2)}Ā­GeĀ­(Ī·<sup>1</sup>-C<sub>5</sub>H<sub>5</sub>)] (<b>4</b>), by reaction with sodium cyclopentadienylide. The reaction of compound <b>1</b> with trisĀ­(pentafluorophenyl)Ā­borane led to the formation of a Lewis acidā€“base adduct, [{NĀ­(SiMe<sub>3</sub>)Ā­CĀ­(Ph)Ā­CĀ­(SiMe<sub>3</sub>)Ā­(C<sub>5</sub>H<sub>4</sub>N-2)}Ā­GeĀ­(Cl)ā†’BĀ­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>] (<b>5</b>)

    Reactivity of Pyridyl-1-azaallyl Germanium(I) Dimer: Synthesis of a Digermahydrazine Derivative and an Iron-Coordinated Germanium(I) Dimer

    No full text
    Reactivity of the pyridyl-1-azaallyl germaniumĀ­(I) dimer LGeGeL (<b>2</b>; L = NĀ­(SiMe<sub>3</sub>)Ā­CĀ­(Ph)Ā­CĀ­(SiMe<sub>3</sub>)Ā­(C<sub>5</sub>H<sub>4</sub>N-2)) has been investigated. Treatment of germaniumĀ­(I) dimer <b>2</b> with 1 equiv of azobenzene afforded the pyridyl-1-azaallyl digermahydrazine derivative [LGeNPh]<sub>2</sub> (<b>3</b>). The reaction of <b>2</b> with 1 and 2 equiv of diiron nonacarbonyl, Fe<sub>2</sub>(CO)<sub>9</sub>, afforded the novel unsymmetric germaniumĀ­(I) complex [LGeGeĀ­(FeĀ­(CO)<sub>4</sub>)Ā­L] (<b>4</b>) and the diiron Lewis acidā€“base adduct [LGeĀ­(FeĀ­(CO)<sub>4</sub>)]<sub>2</sub> (<b>5</b>). The solid-state structure of <b>4</b> reveals that the two germaniumĀ­(I) centers within the same molecule have different coordinating geometries. Compound <b>4</b> can also be prepared by the facile reaction of the pyridyl-1-azaallyl germaniumĀ­(II) chloride LGeCl (<b>1</b>) with Collmanā€™s reagent, Na<sub>2</sub>FeĀ­(CO)<sub>4</sub>

    Synthesis and Structural Characterization of Metallogermylenes, Cp-Substituted Germylene, and a Germanium(II)-Borane Adduct from Pyridyl-1-azaallyl Germanium(II) Chloride

    No full text
    The reaction of [{NĀ­(SiMe<sub>3</sub>)Ā­CĀ­(Ph)Ā­CĀ­(SiMe<sub>3</sub>)Ā­(C<sub>5</sub>H<sub>4</sub>N-2)}Ā­GeCl] (<b>1</b>) with NaĀ­[MĀ­(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)Ā­(CO)<sub>3</sub>]Ā·2DME (M = Mo, W) afforded the metallogermylenes [{NĀ­(SiMe<sub>3</sub>)Ā­CĀ­(Ph)Ā­CĀ­(SiMe<sub>3</sub>)Ā­(C<sub>5</sub>H<sub>4</sub>N-2)}Ā­Ge-MĀ­(Ī·<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)Ā­(CO)<sub>3</sub>] (M = Mo (<b>2</b>), W (<b>3</b>)). Compounds <b>2</b> and <b>3</b> have been characterized by X-ray crystallography and NMR and IR spectroscopy. Structural analyses of compounds <b>2</b> and <b>3</b> are consistent with the presence of lone-pair electrons at the germaniumĀ­(II) center. The Geā€“Mo and Geā€“W bond distances of 2.875(1) and 2.852(1) ƅ are consistent with Geā€“metal single bonds. The chlorogermylene <b>1</b> was also used in the synthesis of a substituted germylene, [{NĀ­(SiMe<sub>3</sub>)Ā­CĀ­(Ph)Ā­CĀ­(SiMe<sub>3</sub>)Ā­(C<sub>5</sub>H<sub>4</sub>N-2)}Ā­GeĀ­(Ī·<sup>1</sup>-C<sub>5</sub>H<sub>5</sub>)] (<b>4</b>), by reaction with sodium cyclopentadienylide. The reaction of compound <b>1</b> with trisĀ­(pentafluorophenyl)Ā­borane led to the formation of a Lewis acidā€“base adduct, [{NĀ­(SiMe<sub>3</sub>)Ā­CĀ­(Ph)Ā­CĀ­(SiMe<sub>3</sub>)Ā­(C<sub>5</sub>H<sub>4</sub>N-2)}Ā­GeĀ­(Cl)ā†’BĀ­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>] (<b>5</b>)
    corecore