53 research outputs found

    Exogenous Expression of Human apoA-I Enhances Cardiac Differentiation of Pluripotent Stem Cells

    Get PDF
    The cardioprotective effects of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (apoA-I) are well documented, but their effects in the direction of the cardiac differentiation of embryonic stem cells are unknown. We evaluated the effects of exogenous apoA-I expression on cardiac differentiation of ESCs and maturation of ESC-derived cardiomyocytes. We stably over-expressed full-length human apoA-I cDNA with lentivirus (LV)-mediated gene transfer in undifferentiated mouse ESCs and human induced pluripotent stem cells. Upon cardiac differentiation, we observed a significantly higher percentage of beating embryoid bodies, an increased number of cardiomyocytes as determined by flow cytometry, and expression of cardiac markers including α-myosin heavy chain, β-myosin heavy chain and myosin light chain 2 ventricular transcripts in LV-apoA-I transduced ESCs compared with control (LV-GFP). In the presence of noggin, a BMP4 antagonist, activation of BMP4-SMAD signaling cascade in apoA-I transduced ESCs completely abolished the apoA-I stimulated cardiac differentiation. Furthermore, co-application of recombinant apoA-I and BMP4 synergistically increased the percentage of beating EBs derived from untransduced D3 ESCs. These together suggests that that pro-cardiogenic apoA-I is mediated via the BMP4-SMAD signaling pathway. Functionally, cardiomyocytes derived from the apoA-I-transduced cells exhibited improved calcium handling properties in both non-caffeine and caffeine-induced calcium transient, suggesting that apoA-I plays a role in enhancing cardiac maturation. This increased cardiac differentiation and maturation has also been observed in human iPSCs, providing further evidence of the beneficial effects of apoA-I in promoting cardiac differentiation. In Conclusion, we present novel experimental evidence that apoA-I enhances cardiac differentiation of ESCs and iPSCs and promotes maturation of the calcium handling property of ESC-derived cardiomyocytes via the BMP4/SMAD signaling pathway

    Additive Manufacturing in Customized Medical Device

    Get PDF
    The long-established application of rapid prototyping in additive manufacturing (AM) has inspired a revolution in the medical industry into a new era, in which the clinical-driven development of the customized medical device is enabled. This transformation could only be sustainable if clinical concerns could be well addressed. In this work, we propose a workflow that addresses critical clinical concerns such as translation from medical needs to product innovation, anatomical conformation and execution, and validation. This method has demonstrated outstanding advantages over the traditional manufacturing approach in terms of form, function, precision, and clinical flexibility. We further propose a protocol for the validation of biocompatibility, material, and mechanical properties. Finally, we lay out a roadmap for AM-driven customized medical device innovation based on our experiences in Hong Kong, addressing problems of certification, qualification, characterization of three dimensional (3D) printed implants according to medical demands

    Promotion of knowledge and awareness of parents in HK about infant oral health care

    Get PDF
    Aim: To promote the knowledge and awareness of infant oral health (OH) care among Hong Kong parents with children aged 0 to 2 years through an interactive workshop and to evaluate its effectiveness. Methods: Parents were recruited from government-registered childcare centers and private playgroups. Interactive workshops consisted of a 30-minute PowerPoint presentation and 20 minutes of small-group activities, which included infant oral hygiene instruction with custom-made infant dentition models, diet analysis and question-and-answer session. Self-completed questionnaires used to evaluate the knowledge and attitude of parents were distributed before and after the workshops. Scores on general OH knowledge (range=0-18), infant OH knowledge (0-10) and parent’s attitude (0-4) were computed. Scores of at least 70% were considered proficient. Results: Among the 111 participants (aged 26 to 54 years, 64% mothers), 96% had a child aged 0 to 30 months. 30% had their children’s mouth cleaned at least twice a day. Only one participant had brought his/her child to see a dentist. Weaker aspects in parents’ OH knowledge and common misconceptions were identified in the pre-survey. Only 35% identified frequent meals as an increased caries risk; only 59% and 79% identified starchy food and formula milk as cariogenic food respectively. 58% did not know water fluoridation can prevent caries, while 33% of parents pointed out calcium supplement can prevent caries. Before the workshop, 41% had proficient general OH knowledge (mean=11.9) and 16% had proficient infant OH knowledge (mean=4.8). Over half of parents showed positive attitude (mean=3.4). Significant improvements in general OH knowledge (mean=15.6, p<0.001), infant OH knowledge (mean=8.8, p<0.001) and attitude (mean=3.9, p<0.001) were observed. Parents reflected the workshops were useful (94%) and they learned new practices to improve their infants’ OH (95%). Conclusion: Several deficiencies in oral health knowledge and behaviour are identified. The interactive workshops can effectively promote the knowledge and awareness of infant oral health care among parents with children aged 0 to 2 years. Large-scale infant oral health survey is needed. Interactive workshops with longer follow-up periods are recommended. More guidelines can be provided to parents and general dentists for prevention of caries.published_or_final_versio

    The Role of Proline Rich Tyrosine Kinase 2 (Pyk2) on Cisplatin Resistance in Hepatocellular Carcinoma

    Get PDF
    Aims: We previously demonstrated Proline rich tyrosine kinase 2 (Pyk2) plays important roles in regulating tumor progression, migration and invasion in hepatocellular carcinoma (HCC). In this study, we aimed to examine the role of proline rich tyrosine kinase 2 (Pyk2) on cisplatin resistance in HCC and to explore its underlying molecular mechanism. Methodology/Principal Findings: Stable transfectants either overexpressing or suppressing Pyk2 were established in different HCC cell lines. MTT, colony formation and Annexin-V assays were employed to examine their in vitro responses to cisplatin. Xenograft ectopic and orthotopic nude mice models were generated to investigate the in vivo responses of them to cisplatin treatment. cDNA microarray was performed to identify Pyk2-induced genes which were further validated by quantitative real-time RT-PCR using clinical HCC samples. In vitro functional study demonstrated that Pyk2-overexpressing HCC transfectants exhibited relatively lower cytotoxicity, higher colony-forming ability and lower apoptosis to cisplatin compared with the control transfectants. Moreover, Pyk2 overexpressing HCC transfectants had a higher survival rate under cisplatin treatment by up-regulation of AKT phosphorylation. In vivo xenograft nude mice model demonstrated that Pyk2-overexpressing transfectants developed higher tolerance to cisplatin treatment together with less tumor necrosis and apoptosis. cDNA microarray analysis revealed that there were more than 4,000 genes differentially expressed upon overexpression of Pyk2. Several upregulated genes were found to be involved in drug resistance and invasion in cancers. Among them, the expression profiles of MDR1, GAGE1, STAT1 and MAP7 were significantly associated with the expression of Pyk2 in clinical HCC samples. Conclusions: Our results may suggest a new evidence of Pyk2 on promoting cisplatin resistance of HCC cells through preventing cell apoptosis, activation of AKT pathway and upregulation of drug resistant genes. © 2011 Geng et al.published_or_final_versio

    MicroRNA profiling study reveals MIR-150 in association with metastasis in nasopharyngeal carcinoma

    Get PDF
    © 2017 The Author(s). MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in pathogenesis of human cancers. Several miRNAs have been shown to involve in nasopharyngeal carcinoma (NPC) pathogenesis through alteration of gene networks. A global view of the miRNA expression profile of clinical specimens would be the best way to screen out the possible miRNA candidates that may be involved in disease pathogenesis. In this study, we investigated the expression profiles of miRNA in formalin-fixed paraffin-embedded tissues from patients with undifferentiated NPC versus non-NPC controls using a miRNA real-time PCR platform, which covered a total of 95 cancer-related miRNAs. Hierarchical cluster analysis revealed that NPC and non-NPC controls were clearly segregated. Promisingly, 10 miRNA candidates were differentially expressed. Among them, 9 miRNAs were significantly up-regulated of which miR-205 and miR-196a showed the most up-regulated in NPC with the highest incidence percentage of 94.1% and 88.2%, respectively, while the unique down-regulated miR-150 was further validated in patient sera. Finally, the in vitro gain-of-function and loss-of-function assays revealed that miR-150 can modulate the epithelial-mesenchymal-transition property in NPC/HK-1 cells and led to the cell motility and invasion. miR-150 may be a potential biomarker for NPC and plays a critical role in NPC tumourigenesis.Link_to_subscribed_fulltex

    Mandatory chromosomal segment balance in aneuploid tumor cells

    Get PDF
    Copyright: Copyright 2013 Elsevier B.V., All rights reserved.Background: Euploid chromosome balance is vitally important for normal development, but is profoundly changed in many tumors. Is each tumor dependent on its own structurally and numerically changed chromosome complement that has evolved during its development and progression? We have previously shown that normal chromosome 3 transfer into the KH39 renal cell carcinoma line and into the Hone1 nasopharyngeal carcinoma line inhibited their tumorigenicity. The aim of the present study was to distinguish between a qualitative and a quantitative model of this suppression. According to the former, a damaged or deleted tumor suppressor gene would be restored by the transfer of a normal chromosome. If so, suppression would be released only when the corresponding sequences of the exogenous normal chromosome are lost or inactivated. According to the alternative quantitative model, the tumor cell would not tolerate an increased dosage of the relevant gene or segment. If so, either a normal cell derived, or, a tumor derived endogenous segment could be lost. Methods: Fluorescence in Situ Hybridization based methods, as well as analysis of polymorphic microsatellite markers were used to follow chromosome 3 constitution changes in monochromosomal hybrids. Results: In both tumor lines with introduced supernumerary chromosomes 3, the copy number of 3p21 or the entire 3p tended to fall back to the original level during both in vitro and in vivo growth. An exogenous, normal cell derived, or an endogenous, tumor derived, chromosome segment was lost with similar probability. Identification of the lost versus retained segments showed that the intolerance for increased copy number was particularly strong for 3p14-p21, and weaker for other 3p regions. Gains in copy number were, on the other hand, well tolerated in the long arm and particularly the 3q26-q27 region. Conclusion: The inability of the cell to tolerate an experimentally imposed gain in 3p14-p21 in contrast to the well tolerated gain in 3q26-q27 is consistent with the fact that the former is often deleted in human tumors, whereas the latter is frequently amplified. The findings emphasize the importance of even minor changes in copy number in seemingly unbalanced aneuploid tumors.publishersversionPeer reviewe

    Investigation of candidate tumor suppressor genes mapped to chromosome 3p21.3 in nasopharyngeal carcinoma

    No full text
    The tumor suppressive role of chromosome 3p was demonstrated in various cancers including nasopharyngeal carcinoma (NPC). In this study, we used the elimination test to elucidate the tumor suppressive regions on chromosome 3p21.3 in NPC. Three critical regions were identified from the loss of heterozygosity studies of the microcell hybrids and the corresponding tumor seggregants. These regions overlap with three critical tumor suppressive regions mapped to the 3p21.3 region, which were previously identified in other cancers. We analyzed the tumor suppressive microcell hybrids and their corresponding tumor segregant cell lines by using the cDNA oligonucleotide microarray. One candidate tumor suppressor gene (TSG) mapped to 3p21.3, RIS1, was identified from the cDNA microarray analysis. The 630 kb region at 3p21.3 identified from lung cancer, known as the LUCA region, appears critical for tumor suppression in many cancers and multiple candidate TSGs were mapped to this region. Two candidate TSGs from the LUCA region, BLU/ZMYND10 and SEMA3B, were investigated in more detail. Quantitative RT-PCR shows the down-regulation of BLU/ZMYND10 and SEMA3B was frequently found in NPC cell lines and NPC biopsies. By using the gene inactivation test (GIT), we demonstrated that BLU/ZMYND10 and SEMA3B show tumor suppressive functions in vivo. These results further confirm the tumor suppressive role of chromosome 3p21.3 in NPC. BLU/ZMYND10 and SEMA3B are two candidate TSGs in the 3p21.3 LUCA region, which can functionally suppress tumor growth in vivo

    Identification of miR-106b over-expression in metastatic hepatocellular carcinoma by using the orthotopic animal model

    No full text
    published_or_final_versionSurgeryDoctoralDoctor of Philosoph

    Functional studies of the chromosome 3p21.3 candidate tumor suppressor gene BLU/ZMYND10 in nasopharyngeal carcinoma

    No full text
    Chromosome 3p plays an important role in tumorigenesis in many cancers, including nasopharyngeal carcinoma (NPC). We have previously shown chromosome 3p can suppress tumor growth in vivo by using the monochromosome transfer approach, which indicated the chromosome 3p21.3 region was critical for tumor suppression. BLUIZMYND10 is one of the candidate tumor suppressor genes mapping in the 3p21.3 critical region and is a candidate TSG for NPC. By quantitative RT-PCR, it is frequently downregulated in NPC cell lines (83\%) and NPC biopsies (80\%). However, no functional studies have yet verified the functional role of BLU/ZMYND10 as a tumor suppressor gene. In the current study, a gene inactivation test (GIT) utilizing a tetracycline regulation system was used to study the functional role of BLU/ZMYND10. When BLU/ZMYND10 is expressed in the absence of doxycycline, the stable transfectants were able to induce tumor suppression in nude mice. In contrast, downregulation of BLU/ZMYND10 in these tumor suppressive clones by doxycycline treatment restored the tumor formation ability. This study provides the first significant evidence to demonstrate BLUIZMYNDIO can functionally suppress tumor formation in vivo and is, therefore, likely to be one of the candidate tumor suppressor genes involved in NPC. Published 2006 Wiley-Liss, Inc
    corecore