24 research outputs found

    Laser spectroscopy of hyperfine structure in highly-charged ions: a test of QED at high fields

    Full text link
    An overview is presented of laser spectroscopy experiments with cold, trapped, highly-charged ions, which will be performed at the HITRAP facility at GSI in Darmstadt (Germany). These high-resolution measurements of ground state hyperfine splittings will be three orders of magnitude more precise than previous measurements. Moreover, from a comparison of measurements of the hyperfine splittings in hydrogen- and lithium-like ions of the same isotope, QED effects at high electromagnetic fields can be determined within a few percent. Several candidate ions suited for these laser spectroscopy studies are presented.Comment: 5 pages, 1 figure, 1 table. accepted for Canadian Journal of Physics (2006

    Optimum electrode configurations for fast ion separation in microfabricated surface ion traps

    Full text link
    For many quantum information implementations with trapped ions, effective shuttling operations are important. Here we discuss the efficient separation and recombination of ions in surface ion trap geometries. The maximum speed of separation and recombination of trapped ions for adiabatic shuttling operations depends on the secular frequencies the trapped ion experiences in the process. Higher secular frequencies during the transportation processes can be achieved by optimising trap geometries. We show how two different arrangements of segmented static potential electrodes in surface ion traps can be optimised for fast ion separation or recombination processes. We also solve the equations of motion for the ion dynamics during the separation process and illustrate important considerations that need to be taken into account to make the process adiabatic

    Generation of continuous variable squeezing and entanglement of trapped ions in time-varying potentials

    Full text link
    We investigate the generation of squeezing and entanglement for the motional degrees of freedom of ions in linear traps, confined by time-varying and oscillating potentials, comprised of an DC and an AC component. We show that high degrees of squeezing and entanglement can be obtained by controlling either the DC or the AC trapping component (or both), and by exploiting transient dynamics in regions where the ions' motion is unstable, without any added optical control. Furthermore, we investigate the time-scales over which the potentials should be switched in order for the manipulations to be most effective.Comment: 10 pages, submitted to Quantum Information Processing (special issue on Quantum Decoherence and Entanglement

    Suitability of linear quadrupole ion traps for large Coulomb crystals

    Full text link
    Growing and studying large Coulomb crystals, composed of tens to hundreds of thousands of ions, in linear quadrupole ion traps presents new challenges for trap implementation. We consider several trap designs, first comparing the total driven micromotion amplitude as a function of location within the trapping volume; total micromotion is an important point of comparison since it can limit crystal size by transfer of radiofrequency drive energy into thermal energy. We also compare the axial component of micromotion, which leads to first-order Doppler shifts along the preferred spectroscopy axis in precision measurements on large Coulomb crystals. Finally, we compare trapping potential anharmonicity, which can induce nonlinear resonance heating by shifting normal mode frequencies onto resonance as a crystal grows. We apply a non-deforming crystal approximation for simple calculation of these anharmonicity-induced shifts, allowing a straightforward estimation of when crystal growth can lead to excitation of different nonlinear heating resonances. In the axial micromotion and anharmonicity points of comparison, we find significant differences between the compared trap designs, with an original rotated-endcap trap performing slightly better than the conventional in-line endcap trap
    corecore