89 research outputs found

    A review of the renal system and diurnal variations of renal activity in livestock

    Get PDF
    Kidneys are the main organs regulating water-electrolyte homeostasis in the body. They are responsible for maintaining the total volume of water and its distribution in particular water spaces, for electrolyte composition of systemic fluids and also for maintaining acid-base balance. These functions are performed by the plasma filtration process in renal glomeruli and the processes of active absorption and secretion in renal tubules, all adjusted to an 'activity-rest' rhythm. These diurnal changes are influenced by a 24-hour cycle of activity of hormones engaged in the regulation of renal activity. Studies on spontaneous rhythms of renal activity have been carried out mainly on humans and laboratory animals, but few studies have been carried out on livestock animals. Moreover, those results cover only some aspects of renal physiology. This review gives an overview of current knowledge concerning renal function and diurnal variations of some renal activity parameters in livestock, providing greater understanding of general chronobiological processes in mammals. Detailed knowledge of these rhythms is useful for clinical, practical and pharmacological purposes, as well as studies on their physical performance

    Perinatal Asphyxia Affects Rat Auditory Processing: Implications for Auditory Perceptual Impairments in Neurodevelopmental Disorders

    Get PDF
    Perinatal asphyxia, a naturally and commonly occurring risk factor in birthing, represents one of the major causes of neonatal encephalopathy with long term consequences for infants. Here, degraded spectral and temporal responses to sounds were recorded from neurons in the primary auditory cortex (A1) of adult rats exposed to asphyxia at birth. Response onset latencies and durations were increased. Response amplitudes were reduced. Tuning curves were broader. Degraded successive-stimulus masking inhibitory mechanisms were associated with a reduced capability of neurons to follow higher-rate repetitive stimuli. The architecture of peripheral inner ear sensory epithelium was preserved, suggesting that recorded abnormalities can be of central origin. Some implications of these findings for the genesis of language perception deficits or for impaired language expression recorded in developmental disorders, such as autism spectrum disorders, contributed to by perinatal asphyxia, are discussed

    Transplantation of Specific Human Astrocytes Promotes Functional Recovery after Spinal Cord Injury

    Get PDF
    Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human astrocytes that appears to be particularly suitable for further development towards clinical application in treating the traumatically injured or diseased human central nervous system

    Astrocyte scar formation aids central nervous system axon regeneration

    Get PDF
    Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration
    corecore