37 research outputs found

    Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation

    Get PDF
    Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic) or uncued (idiothetic) recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze), and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease

    The role of p75NTR in cholinergic basal forebrain structure and function

    Get PDF
    The role of the p75 neurotrophin receptor (p75NTR) in adult cholinergic basal forebrain (cBF) neurons is unclear due to conflicting results from previous studies and to limitations of existing p75NTR-knock-out mouse models. In the present study we used a novel conditional knock-out line (ChAT-cre p75in/in) to assess the role of p75NTR in the cBF by eliminating p75NTR in choline acetyl-transferase-expressing cells. We show that the absence of p75NTR results in a lasting increase in cBF cell number, cell size, and cholinergic innervation to the cortex. Analysis of adult ChAT-cre p75in/in mice revealed that mutant animals show a similar loss of cBF neurons with age to that observed in wild-type animals, indicating that p75NTR does not play a significant role in mediating this age-related decline in cBF neuronal number. However, the increased cholinergic axonal innervation of the cortex, but not the hippocampus, corresponded to alterations in idiothetic but not allothetic navigation. These findings support a role for p75NTR-mediated regulation of cholinergic-dependent cognitive function, and suggest that the variability in previous reports of cBF neuron number may stem from limited spatial and temporal control of p75NTR expression in existing knock-out models

    Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination

    Get PDF
    The critical role of oligodendrocytes in producing and maintaining myelin that supports rapid axonal conduction in CNS neurons is well established. More recently, additional roles for oligodendrocytes have been posited, including provision of trophic factors and metabolic support for neurons. To investigate the functional consequences of oligodendrocyte loss, we have generated a transgenic mouse model of conditional oligodendrocyte ablation. In this model, oligodendrocytes are rendered selectively sensitive to exogenously administered diphtheria toxin (DT) by targeted expression of the diphtheria toxin receptor in oligodendrocytes. Administration of DT resulted in severe clinical dysfunction with an ascending spastic paralysis ultimately resulting in fatal respiratory impairment within 22 d of DT challenge. Pathologically, at this time point, mice exhibited a loss of ∼26% of oligodendrocyte cell bodies throughout the CNS. Oligodendrocyte cell-body loss was associated with moderate microglial activation, but no widespread myelin degradation. These changes were accompanied with acute axonal injury as characterized by structural and biochemical alterations at nodes of Ranvier and reduced somatosensory-evoked potentials. In summary, we have shown that a death signal initiated within oligodendrocytes results in subcellular changes and loss of key symbiotic interactions between the oligodendrocyte and the axons it ensheaths. This produces profound functional consequences that occur before the removal of the myelin membrane, i.e., in the absence of demyelination. These findings have clear implications for the understanding of the pathogenesis of diseases of the CNS such as multiple sclerosis in which the oligodendrocyte is potentially targeted

    Whole cell and local field potential recordings

    No full text
    This dataset was obtained using voltage clamp, current clamp and local field potential combined with sensory stimulation in the basolateral amygdala of anesthetized animals. The high level of integration observed in this brain region allowed us to explore brain network dynamics at the sub-cortical level

    Neuronal activity - From in vitro preparation to behaving animals

    No full text
    The knowledge of the mechanisms regulating electric neuronal activity is fragmented by the wide variety of techniques and experimental models currently used in neurophysiological research. The interest and importance of the results obtained in any research is improved when interpreted in the perspective of the organism functioning as a whole in physiological conditions. Such interpretation, freed of the constraints imposed by the different techniques and experimental conditions used, is especially important when discussing together results obtained at the behavioral, cellular, and molecular level. This article outlines some of the key factors to consider when experiments from different models are interpreted together

    Oscillations in the basolateral amygdala: aversive stimulation is state dependent and resets the oscillatory phase

    No full text
    Crane JW, Windels F, Sah P. Oscillations in the basolateral amygdala: aversive stimulation is state dependent and resets the oscillatory phase. J Neurophysiol 102: 1379-1387, 2009. First published July 1, 2009; doi: 10.1152/jn.00438.2009. Slow oscillations

    Auditory tones and foot-shock recapitulate spontaneous sub-threshold activity in basolateral amygdala principal neurons and interneurons

    No full text
    In quiescent states such as anesthesia and slow wave sleep, cortical networks show slow rhythmic synchronized activity. In sensory cortices this rhythmic activity shows a stereotypical pattern that is recapitulated by stimulation of the appropriate sensory modality. The amygdala receives sensory input from a variety of sources, and in anesthetized animals, neurons in the basolateral amygdala (BLA) show slow rhythmic synchronized activity. Extracellular field potential recordings show that these oscillations are synchronized with sensory cortex and the thalamus, with both the thalamus and cortex leading the BLA. Using whole-cell recording in vivo we show that the membrane potential of principal neurons spontaneously oscillates between up- and down-states. Footshock and auditory stimulation delivered during down-states evokes an up-state that fully recapitulates those occurring spontaneously. These results suggest that neurons in the BLA receive convergent input from networks of cortical neurons with slow oscillatory activity and that somatosensory and auditory stimulation can trigger activity in these same networks
    corecore