80 research outputs found

    Fear

    Get PDF

    Can you run like the wind?

    Get PDF

    Fear

    Get PDF

    The turkey Ig-like receptor family

    Get PDF
    Es wurden sechs turkey-Ig-like receptor (TILR) Sequenzen identifiziert, bestehend aus einer TILR-A, einer TILR-B und vier TILR-AB Sequenzen. Bei allen vier TILR-AB Sequenzen sind die fünf für die IgY-CHIR-AB-Bindung essentiellen Aminosäuren konserviert und für TILR-AB1 konnte die Bindung an IgY nachgewiesen werden. Interessanterweise bindet TILR-AB1 nicht nur IgY der Pute, sondern auch an IgY von Huhn, Wachtel und Fasan, die alle der Vogelfamilie der Phasanidae angehören. Bei drei ausgewählten Vertretern außerhalb dieser Familie (Graupapagei, Falke und Ente) konnte die IgY-Bindung an TILR-AB1 nicht nachgewiesen werden. Im Gegensatz zum Huhn, dessen CHIR-Familie auf einem Mikrochromosom lokalisiert ist, werden die in den Datenbanken vorhandenen TILR-Sequenzen und Fragmente dem Makrochromosom 3 zugeordnet. Auch im Expressionsmuster unterscheiden sich CHIR und TILR deutlich. Während die TILR-B-Expression nicht näher untersucht werden konnte, zeigte sich für TILR-A und TILR-AB, dass diese weder auf T- noch auf B-Zellen exprimiert werden. Auf Thrombozyten und Monozyten ist eine sehr hohe Expressionsrate sichtbar. Auffällig ist, dass der Großteil der TILR-A positiven Zellen auch TILR-AB coexprimiert. In den Datenbanken finden sich derzeit keine Hinweise auf das Vorhandensein von CHIR-Homologen bei Zebrafink, Fliegenschnäpper, Wellensittich und Ente. Auch die verfügbaren gegen CHIR gerichteten monoklonalen Antikörper zeigten auf Entenblut keine Kreuzreaktivität. Erst eine genaue Annotation der genomischen Daten wird Aufschluss darüber geben, inwiefern CHIR-homologe Rezeptorfamilien bei anderen Vogelspezies vorhanden und expandiert sind.Six turkey Ig-like receptor (TILR) sequences were identified, composed of one TILR-A, one TILR-B and four TILR-AB sequences. The five amino acid residues, that are essential for the binding to IgY, were conserved in all TILR-AB sequences and the IgY-TILR-AB1 interaction was detectable. Interestingly, TILR-AB1 does not only bind to turkey-IgY, but also to IgY from chicken, quail and pheasant. All of them belong to the bird family phasanidae. The binding of TILR-AB1 to IgY of three particular members outside of this family (grey parrot, hawk and duck) was not measurable. The chicken CHIR family is located on microchromosome 31, in contrast, TILR sequences received from data bases were annotated to macro-chromosome three. Furthermore the expression pattern of CHIR and TILR are different. TILR-A and TILR-AB were shown to be mainly expressed on thrombocytes and macrophages, but not on T- or B-cells. The expression of TILR-B could not be analyzed further due to lack of cross-reactive mab. Most of the TILR-A positive cells also coexpress TILR-AB. There was no evidence in data bases for the existence of CHIR homologues in zebra finch, flycatcher, budgerigar and duck. Also by means of the available anti-CHIR monoclonal antibodies no cross reaction with blood cells of the duck was detectable. Further annotation of different bird genomes will shed light on the situation in other bird species, if they have CHIR-homologue receptor molecules and if so to what extent

    Kolloquien im Sommersemester 2021

    Get PDF

    The Turkey Ig-like receptor family: identification, expression and function.

    Get PDF
    The chicken leukocyte receptor complex located on microchromosome 31 encodes the chicken Ig-like receptors (CHIR), a vastly expanded gene family which can be further divided into three subgroups: activating CHIR-A, bifunctional CHIR-AB and inhibitory CHIR-B. Here, we investigated the presence of CHIR homologues in other bird species. The available genome databases of turkey, duck and zebra finch were screened with different strategies including BLAST searches employing various CHIR sequences, and keyword searches. We could not identify CHIR homologues in the distantly related zebra finch and duck, however, several partial and complete sequences of CHIR homologues were identified on chromosome 3 of the turkey genome. They were designated as turkey Ig-like receptors (TILR). Using cDNA derived from turkey blood and spleen RNA, six full length TILR could be amplified and further divided according to the typical sequence features into one activating TILR-A, one inhibitory TILR-B and four bifunctional TILR-AB. Since the TILR-AB sequences all displayed the critical residues shown to be involved in binding to IgY, we next confirmed the IgY binding using a soluble TILR-AB1-huIg fusion protein. This fusion protein reacted with IgY derived from various gallinaceous birds, but not with IgY from other bird species. Finally, we tested various mab directed against CHIR for their crossreactivity with either turkey or duck leukocytes. Whereas no staining was detectable with duck cells, the CHIR-AB1 specific mab 8D12 and the CHIR-A2 specific mab 13E2 both reacted with a leukocyte subpopulation that was further identified as thrombocytes by double immunofluorescence employing B-cell, T-cell and thrombocyte specific reagents. In summary, although the turkey harbors similar LRC genes as the chicken, their distribution seems to be distinct with predominance on thrombocytes rather than lymphocytes

    Sleep Enforces the Temporal Order in Memory

    Get PDF
    BACKGROUND: Temporal sequence represents the main principle underlying episodic memory. The storage of temporal sequence information is thought to involve hippocampus-dependent memory systems, preserving temporal structure possibly via chaining of sequence elements in heteroassociative networks. Converging evidence indicates that sleep enhances the consolidation of recently acquired representations in the hippocampus-dependent declarative memory system. Yet, it is unknown if this consolidation process comprises strengthening of the temporal sequence structure of the representation as well, or is restricted to sequence elements independent of their temporal order. To address this issue we tested the influence of sleep on the strength of forward and backward associations in word-triplets. METHODOLOGY/PRINCIPAL FINDINGS: Subjects learned a list of 32 triplets of unrelated words, presented successively (A-B-C) in the center of a screen, and either slept normally or stayed awake in the subsequent night. After two days, retrieval was assessed for the triplets sequentially either in a forward direction (cueing with A and B and asking for B and C, respectively) or in a backward direction (cueing with C and B and asking for B and A, respectively). Memory was better for forward than backward associations (p<0.01). Sleep did not affect backward associations, but enhanced forward associations, specifically for the first (AB) transitions (p<0.01), which were generally more difficult to retrieve than the second transitions. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that consolidation during sleep strengthens the original temporal sequence structure in memory, presumably as a result of a replay of new representations during sleep in forward direction. Our finding suggests that the temporally directed replay of memory during sleep, apart from strengthening those traces, could be the key mechanism that explains how temporal order is integrated and maintained in the trace of an episodic memory

    Practicing What You Preach: The Untold Story of Rev. Robert S. Graetz Jr. in the Montgomery Bus Boycott

    No full text
    The Reverend Robert S. Graetz Jr. has a relatively unknown story about his involvement in the Montgomery Bus Boycott. Few remember his name, even though he was the white minister to the all African American congregation of Trinity Lutheran Church. Instead of taking a back seat to the fight for Civil Rights, Rev. Graetz dove head first; driving boycotters to their jobs, attending the mass meetings, and joining the Montgomery Improvement Association (MIA) among many other groups. Rev. Graetz helped lead the Montgomery Bus Boycott with his faith in God and strong convictions of helping those in need to carry him forward
    • …
    corecore