5 research outputs found
Suppression of dilepton production at finite baryon density
We study dilepton production from a quark-gluon plasma of given energy density at finite quark chemical potential μ and find that the dilepton production rate is a strongly decreasing function of μ. Therefore, the signal to background ratio of dileptons from a plasma created in a heavy-ion collision may decrease significantly
Baryon resonances: A Primary rho ---> lepton+ lepton- source in p + p and p + d at 4.9-GeV.
Dilepton spectra for p+p and p+d reactions at 4.9GeV are calculated. We consider electromagnetic bremsstrahlung also in inelastic reactions. N* and Delta* decay present the major contributions to the pho and omega meson yields.Pion annihilation yields only 1.5% of all pho's in p+d. The pho mass spectrum is strongly distorted due to phase space effects, populating dominantly dilepton masses below 770MeV
Collective flow in heavy ion reactions and the properties of excited nuclear matter
Quantum Molecular Dynamics (QMD) calculations of central collisions between heavy nuclei are used to study fragment production and the creation of collective flow. It is shown that the final phase space distributions are compatible with the expectations from a thermally equilibrated source, which in addition exhibits a collective transverse expansion. However, the microscopic analyses of the transient states in the intermediate reaction stages show that the event shapes are more complex and that equilibrium is reached only in very special cases but not in event samples which cover a wide range of impact parameters as it is the case in experiments. The basic features of a new molecular dynamics model (UQMD) for heavy ion collisions from the Fermi energy regime up to the highest presently available energies are outlined
Nucleus-nucleus collisions at highest energies
The microscopic phasespace approach URQMD is used to investigate the stopping power and particle production in heavy systems at SPS and RHIC energies. We find no gap in the baryon rapidity distribution even at RHIC. For CERN energies URQMD shows a pile up of baryons and a supression of multi-nucleon clusters at midrapidity