research

Collective flow in heavy ion reactions and the properties of excited nuclear matter

Abstract

Quantum Molecular Dynamics (QMD) calculations of central collisions between heavy nuclei are used to study fragment production and the creation of collective flow. It is shown that the final phase space distributions are compatible with the expectations from a thermally equilibrated source, which in addition exhibits a collective transverse expansion. However, the microscopic analyses of the transient states in the intermediate reaction stages show that the event shapes are more complex and that equilibrium is reached only in very special cases but not in event samples which cover a wide range of impact parameters as it is the case in experiments. The basic features of a new molecular dynamics model (UQMD) for heavy ion collisions from the Fermi energy regime up to the highest presently available energies are outlined

    Similar works