31 research outputs found

    Plant Transformation by Coinoculation with a Disarmed Agrobacterium tumefaciens Strain and an Escherichia coli Strain Carrying Mobilizable Transgenes

    No full text
    Transformation of Nicotiana tabacum leaf explants was attempted with Escherichia coli as a DNA donor either alone or in combination with Agrobacterium tumefaciens. We constructed E. coli donor strains harboring either the promiscuous IncP-type or IncN-type conjugal transfer system and second plasmids containing the respective origins of transfer and plant-selectable markers. Neither of these conjugation systems was able to stably transform plant cells at detectable levels, even when VirE2 was expressed in the donor cells. However, when an E. coli strain expressing the IncN-type conjugation system was coinoculated with a disarmed A. tumefaciens strain, plant tumors arose at high frequencies. This was caused by a two-step process in which the IncN transfer system mobilized the entire shuttle plasmid from E. coli to the disarmed A. tumefaciens strain, which in turn processed the T-DNA and transferred it to recipient plant cells. The mobilizable plasmid does not require a broad-host-range replication origin for this process to occur, thus reducing its size and genetic complexity. Tumorigenesis efficiency was further enhanced by incubation of the bacterial strains on medium optimized for bacterial conjugation prior to inoculation of leaf explants. These techniques circumvent the need to construct A. tumefaciens strains containing binary vectors and could simplify the creation of transgenic plants

    The RepA and RepB autorepressors and TraR play opposing roles in the regulation of a Ti plasmid repABC operon

    No full text
    The replicator regions of the Ti plasmids of Agrobacterium tumefaciens belong to the repABC family of replication and partitioning systems, members of which are widely distributed among alpha proteobacteria. In the region upstream of the octopine-type Ti plasmid repABC operon, three promoters were recently shown to be activated by the LuxR-type regulator TraR. Activation of these promoters by TraR led to enhanced rep gene expression and increased Ti plasmid copy number. Here we describe a fourth promoter, designated P4. This promoter lies directly upstream of repA and is not regulated by TraR. The promoter was localized by subcloning and demonstrated to be strongly autorepressed. RepA is the major cis-acting autorepressor of this promoter, though RepB enhanced repression and was essential for RepA-mediated repression in trans. Purified RepA bound to an approximately 70-nucleotide operator site overlapping the P4 promoter and extending well downstream. Binding affinity was increased by adenosine di- and tri-phosphates and also by purified RepB. Activation of P1, P2, and P3 enhanced the activity of P4, suggesting that P4 somehow communicates with the upstream promoters. These findings demonstrate that both autoinduction and autorepression play critical and opposing roles in regulating repABC expression and hence in the replication, stability and copy number of the Ti plasmid

    Chemical communication in proteobacteria: Biochemical and structural studies of signal synthases and receptors required for intercellular signalling

    No full text
    Cell-cell communication via the production and detection of chemical signal molecules has been the focus of a great deal of research over the past decade. One class of chemical signals widely used by proteobacteria consists of N-acyl-homoserine lactones, which are synthesized by proteins related to LuxI of Vibrio fischeri and are detected by proteins related to the V. fischeri LuxR protein. A related marine bacterium, Vibrio harveyi, communicates using two chemical signals, one of which, autoinducer-2 (AI-2), is a furanone borate diester that is synthesized by the LuxS protein and detected by a periplasmic protein called LuxP. Evidence from a number of laboratories suggests that AI-2 may be used as a signal by diverse groups of bacteria, and might permit intergeneric signalling. These two families of signalling systems have been studied from the perspectives of physiology, ecology, biochemistry, and more recently, structural biology. Here, we review the biochemistry and structural biology of both acyl-homoserine-lactone-dependent and AI-2-dependent signalling systems
    corecore