19 research outputs found

    Small-scale coexistence of two mouse lemur species (Microcebus berthae and M. murinus) within a homogeneous competitive environment

    Get PDF
    Understanding the co-occurrence of ecologically similar species remains a puzzling issue in community ecology. The species-rich mouse lemurs (Microcebus spec.) are distributed over nearly all remaining forest areas of Madagascar with a high variability in species distribution patterns. Locally, many congeneric species pairs seem to co-occur, but only little detailed information on spatial patterns is available. Here, we present the results of an intensive capture–mark–recapture study of sympatric Microcebus berthae and M. murinus populations that revealed small-scale mutual spatial exclusion. Nearest neighbour analysis indicated a spatial aggregation in Microcebus murinus but not in M. berthae. Although the diet of both species differed in proportions of food categories, they used the same food sources and had high feeding niche overlap. Also, forest structure related to the spatial distribution of main food sources did not explain spatial segregation because parts used by each species exclusively did not differ in density of trees, dead wood and lianas. We propose that life history trade-offs that result in species aggregation and a relative increase in the strength of intra-specific over inter-specific competition best explain the observed pattern of co-occurrence of ecologically similar congeneric Microcebus species

    EPOS – Using Robotics for RvD Simulation of On-Orbit Servicing Missions

    Get PDF
    Increasing complexity and costs of satellite missions promote the idea of extending the operational lifetime or improving functionalities/performance of a satellite in orbit instead of simply replacing it by a new one. Further, satellites in orbit can severely be affected by aging or degradation of their components and systems as well as by consumption of available resources. These problems may be solved by satellite on-orbit servicing (OOS) missions. One of the critical issues of such a mission is to ensure a safe and reliable Rendezvous and Docking (RvD) operation performed autonomously in space. Due to the high risk associated with an RvD operation, it must be carefully analyzed, simulated and verified in detail before the real space mission can be launched. This paper describes a ground-based hardware-in-the-loop RvD simulation facility. Designed and built on 2-decade experience of RvD experiment and testing, this unique, high-fidelity simulation facility is capable of physically simulating the final approach within 25-meter range and the docking/capture process of an on-orbital servicing mission

    EPOS−A Robotics-Based Hardware-in-the-Loop Simulator for Simulating Satellite RvD Operations

    Get PDF
    Increasing complexity and costs of satellite missions promote the idea of extending the operational lifetime or improving functionalities/performance of a satellite in orbit instead of simply replacing it by a new one. Further, satellites in orbit can severely be affected by aging or degradation of their components and systems as well as by consumption of available resources. These problems may be solved by satellite on-orbit servicing missions. One of the critical issues of such a mission is to ensure a safe and reliable Rendezvous and Docking (RvD) operation performed autonomously in space. Due to the high risk associated with an RvD operation, it must be carefully analyzed, simulated and verified in detail before the real space mission can be launched. This paper describes a ground-based hardware-in-the-loop RvD simulation facility. Designed and built on 2-decade experience of RvD experiment and testing, this unique, high-fidelity simulation facility is capable of physically simulating the final approach within 25-meter range and the docking/capture process of an on-orbital servicing mission

    Rehkitzrettung mit dem Fliegenden Wildretter: Erfahrungen der ersten Feldeinsätze

    Get PDF
    Der Fliegende Wildretter des Deutschen Zentrums für Luft- und Raumfahrt ist als prototypische Kleinserie seit dem Jahr 2010 erfolgreich in Deutsch-land und Österreich im Einsatz, um aus der Luft Wildtiere während der Wiesenmahd aufzuspüren, und diese so vor dem Tod durch das Mähwerk zu retten. Der Prototyp basiert auf einem ferngesteuerten Multikopter, der mit mehreren Kameras ausgestattet ist und damit im Flug zuverlässiger und wesentlich schneller Wildtiere er-kennen kann, als dies mit bisher praktizierten Methoden möglich ist. Gemeinsam mit dem Bayerischen Jagdverband und weiteren ausgewählten Nutzern wurden in den Jahren 2011 und 2012 zahlreiche Feldeinsätze zur Rettung von Rehkit-zen mit dem Prototyp des Fliegenden Wildretters durchgeführt. Trotz der relativ kurz bemessenen Suchsaison (etwa von Mitte Mai bis maximal Mitte Juni) konnten dabei viele Kitze vor dem Mähtod gerettet und wichtige Erfahrungen mit dem System im prak-tischen Einsatz gewonnen werden. Die technische Zuverlässigkeit des Geräts auch bei ungünstigen Umweltbedingungen, seine Benutzerfreundlichkeit und damit verbunden die Entlastung des Benutzers von automatisierbaren Aufgaben sind dabei wesentliche Faktoren für den Sucherfolg. Der Beitrag stellt das System vor, beschreibt den Ablauf typischer Feldeinsätze mit dem Fliegenden Wildretter und fasst die wesentlichen Erkenntnisse zusammen. Im Ausblick werden die erkannten Probleme kurz diskutiert und mögliche Lösungen aufgezeigt

    Der Fliegende Wildretter in Aktion: DLR und BJV nutzen ferngesteuerte Flugplattform zur Rehkitzrettung

    Get PDF
    Der Fliegende Wildretter des Deutschen Zentrums für Luft- und Raumfahrt ist als prototypische Kleinserie seit dem Jahr 2010 erfolgreich in Deutschland und Österreich im Einsatz, um aus der Luft Wildtiere während der Wiesenmahd aufzuspüren und diese so vor dem Tod durch das Mähwerk zu retten. Der Prototyp basiert auf einem ferngesteuerten Multikopter, der mit mehreren Kameras ausgestattet ist und damit im Flug zuverlässiger und wesentlich schneller Wildtiere erkennen kann, als dies mit bisher praktizierten Methoden möglich ist. Gemeinsam mit dem Bayerischen Jagdverband und weiteren ausgewählten Nutzern wurden in den Jahren 2011 und 2012 zahlreiche Feldeinsätze zur Rettung von Rehkitzen mit dem Prototyp des Fliegenden Wildretters durchgeführt. Trotz der relativ kurz bemessenen Suchsaison (etwa von Mitte Mai bis maximal Mitte Juni) konnten dabei viele Kitze vor dem Mähtod gerettet und wichtige Erfahrungen mit dem System im praktischen Einsatz gewonnen werden. Die technische Zuverlässigkeit des Geräts auch bei ungünstigen Umweltbedingungen, seine Benutzerfreundlichkeit und damit verbunden die Entlastung des Benutzers von automatisierbaren Aufgaben sind dabei wesentliche Faktoren für den Sucherfolg. Der Beitrag stellt das System vor, beschreibt den Ablauf typischer Feldeinsätze mit dem Fliegenden Wildretter und fasst die wesentlichen Erkenntnisse zusammen. Im Ausblick werden die erkannten Probleme kurz diskutiert und mögliche Lösungen aufgezeigt

    A Dual Three-Phase DC-Link Inverter Prototype Powering a Redundant Space Robotics Motor Drive

    No full text
    Like their industrial counterparts, space robotics motor drives require a DC-link inverter to convert the spacecrafts DC-bus voltage into a three-phase AC rotating field. The designer of a space grade inverter needs to balance various opposed design objectives. Achieving a high level of operational reliability, including dependable fault monitoring capabilities is essential, while simultaneously keeping design complexity as low as possible. Based on the preliminary results of an earlier on-orbit-servicing project study initiated by German Aerospace Center DLR, the Institute of Robotics and Mechatronics has developed an engineering prototype of a robotic arm for space. This paper describes the design and initial operation of the robotic system's dual three-phase DC-link inverter, which powers the robotic motor drives. It summarizes some lessons learned during the development process and indicates the next steps required to further test and qualify the inverter for a planned in-orbit demonstration of European space robotics servicing technology

    Hardware in the Loop Simulator für Renezvous und Docking Manöver

    Get PDF
    In den letzten Jahren wurden mehrere kommerziell sowie auch wissenschaftlich orientierte Satellitenprojekte mit dem Ziel gestartet, On-Orbit-Servicing (OOS) Dienste anzubieten. Darunter versteht man Service-Satelliten, die einen Zielsatelliten anfliegen, an diesem andocken, dessen Bahn- und Lagekontrollaufgaben übernehmen und dann, wenn nötig, weitere Wartungsarbeiten selbständig durchführen. Eine der kritischsten Phasen einer solchen Mission ist der Rendezvous- und Dockingprozess (RvD). Gerade diese Phase muss detailliert analysiert, simuliert und verifiziert werden, um die Machbarkeit der geplanten RvD-Manöver zu prüfen. Das DLR hat bereits mehr als zwei Jahrzehnte Erfahrung im Bereich RvD-Simulation. Die frühere EPOS-Anlage (European Proximity Operations Simulator) war gemeinsam mit der ESA entwickelt worden, um die letzten Meter des Rendezvousvorgangs von Raumschiffen zu simulieren. Zuletzt wurde die Anlage intensiv für die Verifikation der GNC-Sensoren und –systeme des ATV genutzt. Um die künftigen Herausforderungen zu erfüllen, wird derzeit eine neue Simulationsanlage aufgebaut, die auch den Test und die Verifikation von RvD-Vorgängen bei On-Orbit-Servicing Missionen zulassen. Die neue Anlage erlaubt sowohl die „Hardware-in-the-Loop“-Simulation von Rendezvousvorgängen bis zu 25m Entfernung als auch die Simulation des eigentlichen Dockingvorgangs inklusive der dabei auftretenden Kontaktkräfte und -momente. Die Veröffentlichung gibt einen Überblick über das Simulatorkonzept. Es beschreibt sowohl das detaillierte Design der Anlage als auch die vorgesehenen HIL Simulationsanwendungen. Des Weiteren werden aktuelle Performance-Daten aufgezeigt

    A Dedicated Small Lunar Exploration Orbiter and a Mobile Surface Element

    Get PDF
    The Moon is an integral part of the Earth-Moon system, it is a witness to more than 4.5 b. y. of solar system history, and it is the only planetary body except Earth for which we have samples from known locations. The Moon is thus a key object to understand our Solar System. The Moon is our closest companion and can easily be reached from Earth at any time, even with a relatively modest financial budget. Consequently, the Moon was the first logical step in the exploration of our solar system before we pursued more distant targets such as Mars and beyond. The vast amount of knowledge gained from the Apollo and other lunar missions of the late 1960's and early 1970's demonstrates how valuable the Moon is for the understanding of our planetary system (e.g. [1], [2]). Even today, the Moon remains an extremely interesting target scientifically and technologically. New data have helped to address some of our questions about the Earth-Moon system, but many remain and new questions arose. In particular, the discovery of water at the lunar poles, and water and hydroxyl bearing surface materials and volatiles, as well as the discovery of young volcanism have changed our view of the Moon. Therefore, returning to the Moon is the critical stepping-stone to further exploring our immediate planetary neighborhood. Here, we present scientific and technological arguments for a Small Lunar Explorations Orbiter (S-LEO) dedicated to investigate so far unsolved questions and processes. Numerous space-faring nations have realized and identified the unique opportunities related to lunar exploration and have planned missions to the Moon within the next few years. Among these missions, S-LEO will be unique, because of its unprecedented spatial and spectral resolutions. S-LEO will significantly improve our understanding of the lunar environment in terms of composition, surface ages, mineralogy, physical properties, and volatile and regolith processes. S-LEO will carry an entire suite of innovative, complementary technologies, including high-resolution camera systems, several spectrometers that cover previously unexplored parts of the electromagnetic spectrum over a broad range of wavelengths, and a communication system to interact with landed equipment on the farside. The Small Lunar Explorations Orbiter concept is technologically challenging but feasible, and will gather unique, integrated, interdisciplinary data sets that are of high scientific interest and will provide an unprecedented new context for all other international lunar missions. The most visible mission goal of S-LEO will be the identification and mapping of lunar volatiles and investigating their origin and evolution with high spatial as well as spectral resolution. Therefore, in addition to mapping the geological context in the sub-meter range, a screening of the electromagnetic spectrum within a very broad range will be performed. In particular, spectral mapping in the ultraviolet and mid-infrared will provide insight into mineralogical and thermal properties so far unexplored in these wavelength ranges. The determination of the dust distribution in the lunar orbit will provide information about processes between the lunar surface and exosphere supported by direct observations of lunar flashes. Measuring of the radiation environment will finally complete the exosphere investigations. Combined observations based on simultaneous instrument adjustment and correlated data processing will provide an integrated geological, geochemical and geophysical database that enables: • the exploration and utilization of the Moon in the 21st century; • the solution of fundamental problems of planetology concerning the origin and evolution of terrestrial bodies; • understanding the uniqueness of the Earth-Moon System and its formation and evolution; • the absolute calibration of the impact chronology for the dating of solar system processes; • deciphering the lunar regolith as record for space environmental conditions; • mapping lunar resources. S-LEO is featuring a set of unique scientific capabilities w.r.t. other planned missions including: (1) dedicated observation of volatiles (mainly H2O and OH), their formation and evolution in direct context with the geological and mineralogical surface with high spectral and spatial resolution (< 1m/px); (2) besides the VIS-NIR spectral range so far uncovered wavelengths in the ultraviolet (0.2 – 0.4 µm) and mid-infrared (7 - 14 µm) will be mapped to provide mineralogical context for volatile processes (e.g. sources of oxygen); (3) detection of rock-forming elements by means of x-ray fluorescence in the spectral range of .5-10 keV in order to constrain the composition of key elements of lunar surface materials; (4) monitoring of dust and radiation in the lunar environment and its interaction with the surface; and (5) monitoring of present-day meteoroitic impacts. In 2009 ESA commissioned a Mobile Payload Element (MPE) to assist the ESA Lunar Lander mission. The MPE, currently under study in Germany, is designed to be a small, autonomous, innovative vehicle of roughly 10 12 kg for scouting the environment in the vicinity of the lunar landing site. The novel capability of the MPE will be to acquire samples of lunar soil in an area of >100m around the lander and to bring them back to the spacecraft for analysis by on-board instruments. This will enable access to soils that are less contaminated by the descent propulsion system plumes to increase the chances of detection of any indigenous lunar volatiles. The MPE shall acquire samples of regolith with landing-induced contamination being below the detection limit of the associated volatile-seeking instruments. Subsurface regolith sampling is preferable to understand the concentration of volatiles as a function of depth. Additional benefits for the overall science accomplished by a Lunar Lander mission could be obtained if the MPE were to conduct ‘field geology’ type observations and measurements along its traverses, such as geochemical and mineralogical in situ investigations with dedicated instruments on rocks, boulders and regolith. This would dramatically expand the effective area studied by the ESA Lunar Lander mission. Based on technology trades the baseline concept for the MPE system is composed by a 4-wheel active chassis with wheels, a power supply with fixed solar generators plus a secondary battery, a thermal system with active heating and passive insulation, a sensor package for autonomous operations and a VHF/UHF communication system between MPE and the Lander. One unique scientific aspect of the MPE could be the in situ study of rocks, boulders and lithic (rock) fragments which otherwise would only be amenable to measurements using any instrument heads mounted on the lander robotic arm (provided any rocks were within reach of the arm). To fulfill the science objectives, the MPE will be equipped with a stereo camera, the PLUTO mole subsurface regolith sampling system (as flown on Beagle 2) as well as a close-up imager. This instrument package allows acquisition of regolith samples from both illuminated and locally shaded terrain, sampling from the subsurface and from underneath large boulders and documentation of the samples acquired by close-up imaging of the sample site, ideally before and after sample acquisition. A suite of terrain temperature sensors is implicitly included to provide context for the samples acquired from permanently shadowed locations or below the surface, but also to contribute to landing site general science. As an option for the in-situ characterization of the sample material with respect to mineralogy and possibly volatile content, spectrometer experiments or a color capability of the camera could be added. Further, a laboratory environment is currently being established at Freie Universität Berlin in order to allow sample-based geochemical measurements of key rock-forming elements in the soft X-Ray domain (.5-10 keV). The laboratory is used for the hardware development of X-Ray spectrometer experiments to be employed on lunar orbiter and on lunar lander missions. References: [1] H. Hiesinger, J.W. Head, New Views of Lunar Geoscience: An Introduction and Overview, In: Ne Views of the Moon (B.L. Jolliff et al. eds.) Rev. Min. Geochem., 60, 1-81 (2006). [2] R. Jaumann, The Moon, In: Encyclopedia of Astrobiology, M. Gargaud et al. (eds.), Vol. 2, Springer, 280-282 (2011)

    CAESAR: Space Robotics Technology for Assembly, Maintenance, and Repair

    Get PDF
    The Compliant Assistance and Exploration SpAce Robot (CAESAR) is DLR's consistent continuation in the development of force/torque controlled robot systems. The basis is DLR’s world-famous light-weight robot technology (LWR III) which was successfully transferred to KUKA, one of the world’s leading suppliers of robotics. CAESAR is the space qualified equivalent to the current service robot systems for manufacturing and human-robot cooperation. It is designed for a variety of on-orbit services e.g. assembly, maintenance, repair, and debris removal in LEO/GEO. The dexterity and diversity of CAESAR will push the performance of space robotics to the next level in a comparable way as the current intelligent and sensor based service robots changed robotics on earth
    corecore