372 research outputs found

    Computed tomography-osteoaboorptiometry

    Get PDF
    A method of making a visual display of subchondral mineralization in the major synovial joints is described. Unlike existing procedures, it can be used on the living subject. A modified application of computed tomography-densitometry, computed tomography-osteoabsorptiometry makes it possible to explore the mechanical adaptability to the prevailing mechanical force. This claim is based upon the comparison of information obtained from 20 anatomical specimens with CT-osteoabsorptiometry and x-ray densitometry of sections; both methods yielding virtually identical results. The distribution of the subchondral density was then expressed as a map of the articular surface with the aid of an image analyser. This method can make a useful contribution to basic clinical research, as well as providing a diagnostic technique which can also be used for observing progress after a corrective osteotomy or any other procedure causing a change in mechanical function. Examples of its use on living patients are given

    CopY-like Copper Inducible Repressors are Putative ‘Winged Helix' Proteins

    Get PDF
    CopY of Enterococcus hirae is a well characterized copper-responsive repressor involved in copper homeostasis. In the absence of copper, it binds to the promoter. In high copper, the CopZ copper chaperone donates copper to CopY, thereby releasing it from the promoter and allowing transcription of the downstream copper homeostatic genes of the cop operon. We here show that the CopY-like repressors from E. hirae, Lactococcus lactis, and Streptococcus mutans have similar affinities not only for their native promoters, but also for heterologous cop promoters. CopZ of L. lactis accelerated the release of CopY from the promoter, suggesting that CopZ of L. lactis acts as copper chaperone, similar to CopZ in E. hirae. The consensus binding motif of the CopY-like repressors was shown to be TACAxxTGTA. The same binding motif is present in promoters controlled by BlaI of Bacillus licheniformis, MecI of Staphylococcus aureus and related repressors. BlaI and MecI have known structures and belong to the family of ‘winged helix' proteins. In the N- terminal domain, they share significant sequence similarity with CopY of E. hirae. Moreover, they bind to the same TACAxxTGTA motif. NMR analysis of the N-terminal DNA binding domain of CopY of L. lactis showed that it contained the same α-helical content like the same regions of BlaI and MecI. These findings suggest that the DNA binding domains of CopY-like repressors are also of the ‘winged helix' typ

    Die Darstellung der subchondralen Dichtemuster mittels der CT-Osteoabsorptiometrie (CT-OAM) zur Beurteilung der individuellen Gelenkbeanspruchung am Lebenden

    Get PDF
    The researches of Pauwels and those following him have demonstrated that the subchondral bone density distribution below the surface of a joint is a metrical parameter which mirrors the predominant stress acting on that joint. Their technique of x-ray densitometry cannot, however, be used during life. By employing computer tomography, a new method has been developed - CT-osteoabsorptiometry (CT-OAM) - which can be used to obtain the density distribution pattern in the living subject. By means of a comparative investigation on specimens which were examined both with traditional x-ray densitometry and with CT absorptiometry, it has been shown that the new method can produce the same results, but providing the great advantage to be used on the living. In addition, the density distribution pattern of the glenoid cavity has been examined in patients with various shoulder conditions, and also in gymnasts who exercise on the rings. The distribution of subchondral bone density showed different patterns in the different groups examined. Both the comparison of the methods and the subsequent study confirmed that CT osteoabsorptiometry enables assessment to be made of the individual long-term stresses acting on a living joint

    Upgrading the Nutritional Value of PKC Using a Bacillus subtilis Derived Monocomponent β-Mannanase

    Get PDF
    Palm kernel cake (PKC) is an abundant side stream that can only be added to non-ruminant feed in small concentrations due to its content of antinutritional factors, mainly galactomannan, which cannot be digested by non-ruminants. β-mannanases can be added to partially hydrolyze galactomannan to form mannose oligosaccharides, which are known to be prebiotic. We here investigate the action of a β-mannanase from B. subtilis on PKC by colorimetry, NMR and fluorescence microscopy. The amount of mannan oligosaccharides in solution was significantly increased by the β-mannanase and their degree of polymerization (DP) was significantly reduced. There was a dose-response behavior in that larger β-mannanase concentrations increased the amount of soluble mannose oligosaccharides while reducing their average DP. Using confocal immunofluorescence microscopy, solubilization of galactomannan in PKC was clearly visualized. Images show a clear disruption of the cellulose and galactomannan structures of the PKC cell walls. We thus show in this study that using commercial dosages of β-mannanase on PKC can lead to formation of prebiotic compounds. Thus, this study suggests that utilization of PKC in poultry feed formulation might be increased by addition of a β-mannanase and would improve the return on investment

    The stress response protein Gls24 is induced by copper and interacts with the CopZ copper chaperone of Enterococcus hirae

    Get PDF
    Intracellular copper routing in Enterococcus hirae is accomplished by the CopZ copper chaperone. Under copper stress, CopZ donates Cu+ to the CopY repressor, thereby releasing its bound zinc and abolishing repressor-DNA interaction. This in turn induces the expression of the cop operon, which encodes CopY and CopZ, in addition to two copper ATPases, CopA and CopB. To gain further insight into the function of CopZ, the yeast two-hybrid system was used to screen for proteins interacting with the copper chaperone. This led to the identification of Gls24, a member of a family of stress response proteins. Gls24 is part of an operon containing eight genes. The operon was induced by a range of stress conditions, but most notably by copper. Gls24 was overexpressed and purified, and was shown by surface plasmon resonance analysis to also interact with CopZ in vitro. Circular dichroism measurements revealed that Gls24 is partially unstructured. The current findings establish a novel link between Gls24 and copper homeostasi
    corecore