94 research outputs found

    Genomic Identification of Transmembrane β-Barrels (TMBBs)

    Get PDF

    pH-triggered pore-forming peptides with strong composition-dependent membrane selectivity

    Get PDF
    Peptides that self-assemble into nanometer-sized pores in lipid bilayers could have utility in a variety of biotechnological and clinical applications if we can understand their physical chemical properties and learn to control their membrane selectivity. To empower such control, we have used synthetic molecular evolution to identify the pH-dependent delivery peptides, a family of peptides that assemble into macromolecule-sized pores in membranes at low peptide concentration but only at pH < ∼6. Further advancements will also require better selectivity for specific membranes. Here, we determine the effect of anionic headgroups and bilayer thickness on the mechanism of action of the pH-dependent delivery peptides by measuring binding, secondary structure, and macromolecular poration. The peptide pHD15 partitions and folds equally well into zwitterionic and anionic membranes but is less potent at pore formation in phosphatidylserine-containing membranes. The peptide also binds and folds similarly in membranes of various thicknesses, but its ability to release macromolecules changes dramatically. It causes potent macromolecular poration in vesicles made from phosphatidylcholine with 14 carbon acyl chains, but macromolecular poration decreases sharply with increasing bilayer thickness and does not occur at any peptide concentration in fluid bilayers made from phosphatidylcholine lipids with 20-carbon acyl chains. The effects of headgroup and bilayer thickness on macromolecular poration cannot be accounted for by the amount of peptide bound but instead reflect an inherent selectivity of the peptide for inserting into the membrane-spanning pore state. Molecular dynamics simulations suggest that the effect of thickness is due to hydrophobic match/mismatch between the membrane-spanning peptide and the bilayer hydrocarbon. This remarkable degree of selectivity based on headgroup and especially bilayer thickness is unusual and suggests ways that pore-forming peptides with exquisite selectivity for specific membranes can be designed or evolved

    Electrical Response of Bilayers to the Bee Venom Toxin Melittin

    Get PDF

    Viroporin potential of the lentivirus lytic peptide (LLP) domains of the HIV-1 gp41 protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanisms by which HIV-1 mediates reductions in CD4+ cell levels in infected persons are being intensely investigated, and have broad implications for AIDS drug and vaccine development. Virally induced changes in membrane ionic permeability induced by lytic viruses of many families contribute to cytopathogenesis. HIV-1 induces disturbances in plasma membrane ion transport. The carboxyl terminus of TM (gp41) contains potential amphipathic α-helical motifs identified through their structural similarities to naturally occurring cytolytic peptides. These sequences have been dubbed lentiviral lytic peptides (LLP) -1, -2, and -3.</p> <p>Results</p> <p>Peptides corresponding to the LLP domains (from a clade B virus) partition into lipid membranes, fold into α-helices and disrupt model membrane permeability. A peptide corresponding to the LLP-1 domain of a clade D HIV-1 virus, LLP-1D displayed similar activity to the LLP-1 domain of the clade B virus in all assays, despite a lack of amino acid sequence identity.</p> <p>Conclusion</p> <p>These results suggest that the C-terminal domains of HIV-1 Env proteins may form an ion channel, or viroporin. Increased understanding of the function of LLP domains and their role in the viral replication cycle could allow for the development of novel HIV drugs.</p

    Mechanism of HCV's resistance to IFN-α in cell culture involves expression of functional IFN-α receptor 1

    Get PDF
    The mechanisms underlying the Hepatitis C virus (HCV) resistance to interferon alpha (IFN-α) are not fully understood. We used IFN-α resistant HCV replicon cell lines and an infectious HCV cell culture system to elucidate the mechanisms of IFN-α resistance in cell culture. The IFN-α resistance mechanism of the replicon cells were addressed by a complementation study that utilized the full-length plasmid clones of IFN-α receptor 1 (IFNAR1), IFN-α receptor 2 (IFNAR2), Jak1, Tyk2, Stat1, Stat2 and the ISRE- luciferase reporter plasmid. We demonstrated that the expression of the full-length IFNAR1 clone alone restored the defective Jak-Stat signaling as well as Stat1, Stat2 and Stat3 phosphorylation, nuclear translocation and antiviral response against HCV in all IFN-α resistant cell lines (R-15, R-17 and R-24) used in this study. Moreover RT-PCR, Southern blotting and DNA sequence analysis revealed that the cells from both R-15 and R-24 series of IFN-α resistant cells have 58 amino acid deletions in the extracellular sub domain 1 (SD1) of IFNAR1. In addition, cells from the R-17 series have 50 amino acids deletion in the sub domain 4 (SD4) of IFNAR1 protein leading to impaired activation of Tyk2 kinase. Using an infectious HCV cell culture model we show here that viral replication in the infected Huh-7 cells is relatively resistant to exogenous IFN-α. HCV infection itself induces defective Jak-Stat signaling and impairs Stat1 and Stat2 phosphorylation by down regulation of the cell surface expression of IFNAR1 through the endoplasmic reticulum (ER) stress mechanisms. The results of this study suggest that expression of cell surface IFNAR1 is critical for the response of HCV to exogenous IFN-α

    Integrated Design of a Membrane-Lytic Peptide-Based Intravenous Nanotherapeutic Suppresses Triple-Negative Breast Cancer.

    Get PDF
    Funder: KCL PhD scholarshipsFunder: Leverhulme Trust; Id: http://dx.doi.org/10.13039/501100000275Membrane-lytic peptides offer broad synthetic flexibilities and design potential to the arsenal of anticancer therapeutics, which can be limited by cytotoxicity to noncancerous cells and induction of drug resistance via stress-induced mutagenesis. Despite continued research efforts on membrane-perforating peptides for antimicrobial applications, success in anticancer peptide therapeutics remains elusive given the muted distinction between cancerous and normal cell membranes and the challenge of peptide degradation and neutralization upon intravenous delivery. Using triple-negative breast cancer as a model, the authors report the development of a new class of anticancer peptides. Through function-conserving mutations, the authors achieved cancer cell selective membrane perforation, with leads exhibiting a 200-fold selectivity over non-cancerogenic cells and superior cytotoxicity over doxorubicin against breast cancer tumorspheres. Upon continuous exposure to the anticancer peptides at growth-arresting concentrations, cancer cells do not exhibit resistance phenotype, frequently observed under chemotherapeutic treatment. The authors further demonstrate efficient encapsulation of the anticancer peptides in 20 nm polymeric nanocarriers, which possess high tolerability and lead to effective tumor growth inhibition in a mouse model of MDA-MB-231 triple-negative breast cancer. This work demonstrates a multidisciplinary approach for enabling translationally relevant membrane-lytic peptides in oncology, opening up a vast chemical repertoire to the arms race against cancer
    • …
    corecore