196 research outputs found

    Distribution of the superconducting gap in an YNi2B2C film studied by point contact spectroscopy

    Full text link
    The differential resistances Rd=dV/dI(V)R_d=dV/dI(V) of point contacts between a normal metal and a c axis oriented YNi2B2C film (TcT_c = 15.2K) in the superconducting (SC) state have been investigated. Rd(V)R_d(V) contains clear "gap" features connected with processes of Andreev reflection at the boundary between normal metal and superconductor that allow the determination of the SC gap Δ\Delta and its temperature and magnetic field dependence. A distribution of Δ\Delta from Δmin\Delta_min\approx 1.5 meV to Δmax\Delta_max\approx 2.4 meV is revealed; however the critical temperature TcT_c in all cases corresponded to that of the film. The value 2Δmax/kBTc\Delta_max/k_BT_c\approx3.66 is close to the BCS value of 3.52, and the temperature dependence Δ(T)\Delta(T) is BCS-like, irrespective of the actual Δ\Delta value. It is supposed that the distribution of Δ\Delta can be attributed to a gap anisotropy or to a multiband nature of the SC state in YNi2B2C, rather than to the presence of nodes in the gap.Comment: 6 two-column pages, 7 figs; V2: as published, Fig.4 is modifie

    Depairing critical current achieved in superconducting thin films with through-thickness arrays of artificial pinning centers

    Full text link
    Large area arrays of through-thickness nanoscale pores have been milled into superconducting Nb thin films via a process utilizing anodized aluminum oxide thin film templates. These pores act as artificial flux pinning centers, increasing the superconducting critical current, Jc, of the Nb films. By optimizing the process conditions including anodization time, pore size and milling time, Jc values approaching and in some cases matching the Ginzburg-Landau depairing current of 30 MA/cm^2 at 5 K have been achieved - a Jc enhancement over as-deposited films of more than 50 times. In the field dependence of Jc, a matching field corresponding to the areal pore density has also been clearly observed. The effect of back-filling the pores with magnetic material has then been investigated. While back-filling with Co has been successfully achieved, the effect of the magnetic material on Jc has been found to be largely detrimental compared to voids, although a distinct influence of the magnetic material in producing a hysteretic Jc versus applied field behavior has been observed. This behavior has been tested for compatibility with currently proposed models of magnetic pinning and found to be most closely explained by a model describing the magnetic attraction between the flux vortices and the magnetic inclusions.Comment: 9 pages, 10 figure

    Spin singlet small bipolarons in Nb-doped BaTiO3

    Full text link
    The magnetic susceptibility and electrical resistivity of n-type BaTi{1-x}Nb{x}O3 have been measured over a wide temperature range. It is found that, for 0 < x < 0.2, dopant electrons form immobile spin singlet small bipolarons with binding energy around 110 meV. For x = 0.2, a maximum in the electrical resistivity around 15 K indicates a crossover from band to hopping transport of the charge carriers, a phenomenon expected but rarely observed in real polaronic systems.Comment: 5 pages, 4 figure

    p-wave superconductivity in iron-based superconductors

    Get PDF
    The possibility of p-wave pairing in superconductors has been proposed more than five decades ago, but has not yet been convincingly demonstrated. One difficulty is that some p-wave states are thermodynamically indistinguishable from s-wave, while others are very similar to d-wave states. Here we studied the self-field critical current of NdFeAs(O,F) thin films in order to extract absolute values of the London penetration depth, the superconducting energy gap, and the relative jump in specific heat at the superconducting transition temperature, and find that all the deduced physical parameters strongly indicate that NdFeAs(O,F) is a bulk p-wave superconductor. Further investigation revealed that single atomic layer FeSe also shows p-wave pairing. In an attempt to generalize these findings, we re-examined the whole inventory of superfluid density measurements in iron-based superconductors and show quite generally that single-band weak-coupling p-wave superconductivity is exhibited in iron-based superconductors. © 2019, The Author(s).Japan Science and Technology Corporation, JST: JPMJCR18J4Government Council on Grants, Russian FederationJapan Society for the Promotion of Science, JSPS: 16H04646АААА-А18-118020190104-3The authors thank Prof. Jeffery L. Tallon (Victoria University of Wellington, New Zealand) and Prof. Christian Bernhard (University of Fribourg, Switzerland) for helpful discussions, and also for reading and commenting on the manuscript. EFT is grateful for financial support provided by the state assignment of Minobrnauki of Russia (theme “Pressure” No. АААА-А18-118020190104-3) and by Act 211 of the Government of the Russian Federation, contract No. 02.A03.21.0006. KI and HI acknowledge support by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (B) Grant Number 16H04646, as well as JST CREST Grant Number JPMJCR18J4. The Article Processing Charge for this publication was provided by Ural Federal University, Russia

    The interpretation of the field angle dependence of the critical current in defect-engineered superconductors

    Full text link
    We apply the vortex path model of critical currents to a comprehensive analysis of contemporary data on defect-engineered superconductors, showing that it provides a consistent and detailed interpretation of the experimental data for a diverse range of materials. We address the question of whether electron mass anisotropy plays a role of any consequence in determining the form of this data and conclude that it does not. By abandoning this false interpretation of the data, we are able to make significant progress in understanding the real origin of the observed behavior. In particular, we are able to explain a number of common features in the data including shoulders at intermediate angles, a uniform response over a wide angular range and the greater discrimination between individual defect populations at higher fields. We also correct several misconceptions including the idea that a peak in the angular dependence of the critical current is a necessary signature of strong correlated pinning, and conversely that the existence of such a peak implies the existence of correlated pinning aligned to the particular direction. The consistency of the vortex path model with the principle of maximum entropy is introduced.Comment: 14 pages, 7 figure

    The onset of dissipation in high-temperature superconductors: magnetic hysteresis and field dependence

    Full text link
    Recently, we showed that the self-field transport critical current, Ic(sf), of a superconducting wire can be defined in a more fundamental way than the conventional (and arbitrary) electric field criterion, Ec = 1 microV/cm. We defined Ic(sf) as the threshold current, Ic,B, at which the perpendicular component of the local magnetic flux density, measured at any point on the surface of a high-temperature superconducting tape, abruptly crosses over from a non-linear to a linear dependence with increasing transport current. This effect results from the current distribution across the tape width progressively transitioning from non-uniform to uniform. The completion of this progressive transition was found to be singular. It coincides with the first discernible onset of dissipation and immediately precedes the formation of a measureable electric field. Here, we show that the same Ic,B definition of critical currents applies in the presence of an external applied magnetic field. In all experimental data presented here Ic,B is found to be significantly (10-30%) lower than Ic,E determined by the common electric field criterion of Ec = 1 microV/cm, and Ec to be up to 50 times lower at Ic,B than at Ic,E.Comment: 14 pages, 10 figure

    Effect of annealing high-dose heavy-ion irradiated high-temperature superconductor wires

    Get PDF
    Heavy-ion irradiation of high-temperature superconducting thin films has long been known to generate damage tracks of amorphized material that are of close-to-ideal dimension to effectively contribute to pinning of magnetic flux lines and thereby enhance the in-field critical current. At the same time, though, the presence of these tracks reduces the superconducting volume fraction available to transport current while the irradiation process itself generates oxygen depletion and disorder in the remaining superconducting material. We have irradiated commercially available superconducting coated conductors consisting of a thick film of (Y,Dy)Ba2Cu3O7 deposited on a buffered metal tape substrate in a continuous reel-to-reel process. Irradiation was by 185 MeV 197Au ions. A high fluence of 3 × 1011 ions/cm2 was chosen to emphasize the detrimental effects. The critical current was reduced following this irradiation, but annealing at relatively low temperatures of 200 °C and 400 °C substantially restore the critical current of the irradiated material. At high fields and high temperatures there is a net benefit of critical current compared to the untreated materialThe authors wish to thank M. Rupich of American Superconductor for supplying the coated conductor material for our irradiation trials and for useful discussions. PK and MCR thank the Australian Research Council for financial support
    corecore