32 research outputs found

    Clinical practice guidelines for vitamin D in the United Arab Emirates

    Get PDF
    © 2016 Elsevier Ltd In the UAE and the Gulf region in general, there are several intricate public health issues in the context of vitamin D deficiency that needs to be addressed. Changes in lifestyle such as diet, lack of exercise, cultural habits, avoiding sun exposure due to excessive heat, and other risk factors predispose those who live in GULF countries, such as Emiratis likely to becoming vitamin D deficient. Consequently, the prevalence of vitamin D deficiency is high, and new guidelines are needed to overcome this major public health issue. Peer-reviewed papers related to guidelines and those vitamin D-related papers relevant to the Middle-Eastern region were extracted from multiple research databases using key words according to the general guidelines from the Preferred Reporting Items for Systematic Analysis. This guideline was prepared focusing on the United Arab Emirate and the Gulf populations, to overcome the high incidence of vitamin D deficiency and to improve overall health. We recommend the following vitamin D supplementations for different groups of people: (A) Breastfed infants supplement with 400 IU/day up to age 6 months, and 400–600 IU/day between 6 and 12 months, depending on daily intake of total vitamin D and sun exposure; (B) for children and adolescents of age 1–18 years supplement with 600–1000 IU/day depending on the body weight; (C) adults greater than 18 years’, supplementation with 1000–2000 IU/day is recommended, while, (D) the elderly (over 65 years) should be supplemented with 2000 IU/day, throughout the year; (E) pregnant and breast feed women, 2000 IU/day from the first trimester of pregnancy. (F) Premature infants, supplementation of 400–800 IU/daystart from the first days of life. (G) For obese, individuals and those with metabolic syndrome, supplementation of 2000 IU/day (H) For individuals with dark skin complexions and for night workers, supplementation of 1000–2000 IU/day (25–50 μg/day), throughout the year, depending on body weight. The goal of supplementation is to achieve and longer term maintenance of serum 25(OH)D concentration of 30–50 ng/mL

    High prevalence of vitamin D deficiency in Cambodian women:A common deficiency in a sunny country

    Get PDF
    Recent studies have shown that in spite of being generally close to the equator; vitamin D deficiency is common in South East Asian countries. In order to quantify micronutrient status for women and children in Cambodia; a nationally-representative survey was conducted in 2014 linked to the Cambodian Demographic Health Survey. The countrywide median of 25(OH) D was, respectively, 64.9 and 91.1 nmol/L for mothers and children. Based on The Endocrine Society cutoffs (>50<75 nmol/L = insufficiency; <= 50 nmol/L = deficiency); 64.6% of mothers and 34.8% of their children had plasma vitamin D concentrations indicating insufficiency or deficiency. For deficiency alone, 29% of the mothers were found to be vitamin D deficient, but only 13.4% of children. Children who live in urban areas had a 43% higher rate of vitamin D insufficiency versus those who live in rural areas (OR; 1.434; 95% CI: 1.007; 2.041). However, such differences were not observed in their mothers. The high prevalence of vitamin D deficiency is likely in part due to lifestyle choices, including sun avoidance, increasingly predominant indoor work, and covered transport. These survey findings support the need for a broader national Cambodian study incorporating testing of adult men, adolescents and the elderly, and encompassing other parameters such as skeletal health. However, the data presented in this study already show significant deficiencies which need to be addressed and we discuss the benefit of establishing nationally-mandated food fortification programs to enhance the intake of vitamin D

    Vitamin D Deficiency: Effects on Oxidative Stress, Epigenetics, Gene Regulation, and Aging

    No full text
    Recent advances in vitamin D research indicate that this vitamin, a secosteroid hormone, has beneficial effects on several body systems other than the musculoskeletal system. Both 25 dihydroxy vitamin D [25(OH)2D] and its active hormonal form, 1,25-dihydroxyvitamin D [1,25(OH)2D] are essential for human physiological functions, including damping down inflammation and the excessive intracellular oxidative stresses. Vitamin D is one of the key controllers of systemic inflammation, oxidative stress and mitochondrial respiratory function, and thus, the aging process in humans. In turn, molecular and cellular actions form 1,25(OH)2D slow down oxidative stress, cell and tissue damage, and the aging process. On the other hand, hypovitaminosis D impairs mitochondrial functions, and enhances oxidative stress and systemic inflammation. The interaction of 1,25(OH)2D with its intracellular receptors modulates vitamin D&#8211;dependent gene transcription and activation of vitamin D-responsive elements, which triggers multiple second messenger systems. Thus, it is not surprising that hypovitaminosis D increases the incidence and severity of several age-related common diseases, such as metabolic disorders that are linked to oxidative stress. These include obesity, insulin resistance, type 2 diabetes, hypertension, pregnancy complications, memory disorders, osteoporosis, autoimmune diseases, certain cancers, and systemic inflammatory diseases. Vitamin D adequacy leads to less oxidative stress and improves mitochondrial and endocrine functions, reducing the risks of disorders, such as autoimmunity, infections, metabolic derangements, and impairment of DNA repair; all of this aids a healthy, graceful aging process. Vitamin D is also a potent anti-oxidant that facilitates balanced mitochondrial activities, preventing oxidative stress-related protein oxidation, lipid peroxidation, and DNA damage. New understandings of vitamin D-related advances in metabolomics, transcriptomics, epigenetics, in relation to its ability to control oxidative stress in conjunction with micronutrients, vitamins, and antioxidants, following normalization of serum 25(OH)D and tissue 1,25(OH)2D concentrations, likely to promise cost-effective better clinical outcomes in humans

    Rapidly Increasing Serum 25(OH)D Boosts the Immune System, against Infections—Sepsis and COVID-19

    No full text
    Vitamin D deficiency is a global public health problem, a pandemic that commonly affects the elderly and those with comorbidities such as obesity, diabetes, hypertension, respiratory disorders, recurrent infections, immune deficiency, and malignancies, as well as ethnic minorities living in temperate countries. The same groups were worst affected by COVID-19. Since vitamin D deficiency weakens the immune system, it increases the risk of infections, complications, and deaths, such as from sepsis and COVID-19. Deficiency can be remedied cost-effectively through targeted food fortification, supplementation, and/or daily safe sun exposure. Its endocrine functions are limited to mineral metabolism, musculoskeletal systems, specific cell membrane interactions, and parathyroid gland functions. Except for the rapid, endocrine, and cell membrane-based non-genomic functions, all other biological and physiological activities of vitamin D depend on the adequate intracellular synthesis of 1,25(OH)2D (calcitriol) in peripheral target cells via the genome. Calcitriol mediates autocrine (intracrine) and paracrine signalling in immune cells, which provides broader, protective immune functions crucial to overcoming infections. The synthesis of 1,25(OH)2D (calcitriol) in peripheral target cells is dependent on diffusion and endocytosis of D3 and 25(OH)D from the circulation into them, which requires maintenance of serum 25(OH)D concentration above 50 ng/mL. Therefore, in acute infections such as sepsis and respiratory infections like COVID-19, it is necessary to rapidly provide its precursors, D3 and 25(OH)D, through the circulation to generate adequate intracellular calcitriol. Immune defence is one of the crucial non-hormonal functions of vitamin D. A single oral (bolus) dose or divided upfront loading doses between 100,000 and 500,000 IU, using 50,000 IU vitamin D3 increase the serum 25(OH)D concentrations to a therapeutic level of above 50 ng/mL that lasts between two to three months. This takes three to five days to raise serum 25(OH)D. In contrast, a single oral dose of calcifediol (0.014 mg/kg body weight) can generate the needed 25(OH)D concentration within four hours. Considering both D3 and 25(OH)D enter immune cells for generating calcitriol, using the combination of D3 (medium-term) and calcifediol (immediate) is cost-effective and leads to the best clinical outcome. To maximise protection against infections, particularly to reduce COVID-19-associated complications and deaths, healthcare workers should advise patients on safe sun exposure, adequate vitamin D supplementation and balanced diets containing zinc, magnesium, and other micronutrients to support the immune system. Meanwhile, governments, the World Health Organisation, the Centers for Disease Control, and governments should consider similar recommendations to physicians and the public, change the outdated vitamin D and other micronutrient recommendations directed to their population, and organise targetted food fortification programs for the vulnerable groups. This article discusses a rational approach to maintaining a sustained serum 25(OH)D concentration above 50 ng/mL, necessary to attain a robust immune system for overcoming infections. Such would cost-effectively improve the population’s health and reduce healthcare costs. It also describes three cost-effective, straightforward protocols for achieving and sustaining therapeutic serum 25(OH)D concentrations above 50 ng/mL (>125 nmol/L) to keep the population healthy, reduce absenteeism, improve productivity, and lower healthcare costs

    Diagnose early and reverse the impossible

    No full text

    Factors Affecting the Environmentally Induced, Chronic Kidney Disease of Unknown Aetiology in Dry Zonal Regions in Tropical Countries—Novel Findings

    No full text
    A new form of chronic tubulointerstitial kidney disease (CKD) not related to diabetes or hypertension appeared during the past four decades in several peri-equatorial and predominantly agricultural countries. Commonalities include underground stagnation of drinking water with prolonged contact with rocks, harsh climatic conditions with protracted dry seasons, and rampant poverty and malnutrition. In general, the cause is unknown, and the disease is therefore named CKD of unknown aetiology (CKDu). Since it is likely caused by a combination of factors, a better term would be CKD of multifactorial origin (CKDmfo). Middle-aged malnourished men with more than 10 years of exposure to environmental hazards are the most vulnerable. Over 30 factors have been proposed as causative, including agrochemicals and heavy metals, but none has been properly tested nor proven as causative, and unlikely to be the cause of CKDmfo/CKDu. Conditions such as, having favourable climatic patterns, adequate hydration, and less poverty and malnutrition seem to prevent the disease. With the right in vivo conditions, chemical species such as calcium, phosphate, oxalate, and fluoride form intra-renal nanomineral particles initiating the CKDmfo. This article examines the key potential chemical components causing CKDmfo together with the risk factors and vulnerabilities predisposing individuals to this disease. Research findings suggest that in addition to drinking water from stagnant sources that contain high ionic components, more than 10 years of exposure to environmental nephrotoxins and micronutrient malnutrition are needed to contract this fatal disease
    corecore