23 research outputs found

    Adaptation of photosystem II to high and low light in wild-type and triazine-resistant Canola plants: analysis by a fluorescence induction algorithm

    Get PDF
    Plants of wild-type and triazine-resistant Canola (Brassica napus L.) were exposed to very high light intensities and after 1 day placed on a laboratory table at low light to recover, to study the kinetics of variable fluorescence after light, and after dark-adaptation. This cycle was repeated several times. The fast OJIP fluorescence rise curve was measured immediately after light exposure and after recovery during 1 day in laboratory room light. A fluorescence induction algorithm has been used for resolution and analysis of these curves. This algorithm includes photochemical and photo-electrochemical quenching release components and a photo-electrical dependent IP-component. The analysis revealed a substantial suppression of the photo-electrochemical component (even complete in the resistant biotype), a partial suppression of the photochemical component and a decrease in the fluorescence parameter Fo after high light. These effects were recovered after 1 day in the indoor light

    Coverage and Representativeness of Passive Surveillance Components for Cattle and Swine in The Netherlands

    Get PDF
    Common aims of animal health surveillance systems are the timely detection of emerging diseases and health status monitoring. This study aimed to evaluate the coverage and representativeness of passive surveillance components for cattle and swine in the Netherlands from 2015–2019. The passive surveillance components consisted of a telephone helpdesk for veterinary advice and diagnostic and postmortem facilities. Spatial analysis showed heterogeneity (range in RR = 0.26–5.37) of participation across the Netherlands. Generalized linear mixed models showed that distance to the diagnostic facility and farm density were associated with the number of contacts of farmers with the helpdesk and postmortem examination. The contact rate of veterinary practices was associated with their number of clients, ranging in RR from 0.39 to 1.59. We concluded that the evaluation indicated differences in coverage of the passive surveillance components across regions, farms and veterinary practices. Due to the absence of emerging infections in the study period, we were unable to estimate the consequences of the observed differences for the early detection of disease. Nevertheless, regions and veterinary practices with low participation in passive surveillance might be a risk for early detection, and consequently, further understanding of the motivation to participate in passive surveillance components is needed

    Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: plants with a different susceptibility to non-freezing temperature

    Get PDF
    The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll-protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements

    Time sequence of the damage to the acceptor and donor sides of photosystem II by UV-B radiation as evaluated by chlorophyll a fluorescence

    Get PDF
    The effects of ultraviolet-B (UV-B) radiation on photosystem II (PS II) were studied in leaves of Chenopodium album. After the treatment with UV-B the damage was estimated using chlorophyll a fluorescence techniques. Measurements of modulated fluorescence using a pulse amplitude modulated fluorometer revealed that the efficiency of photosystem II decreased both with increasing time of UV-B radiation and with increasing intensity of the UV-B. Fluorescence induction rise curves were analyzed using a mechanistic model of energy trapping. It appears that the damage by UV-B radiation occurs first at the acceptor side of photosystem II, and only later at the donor side

    A simple routine for quantitative analysis of light and dark kinetics of photochemical and non-photochemical quenching of chlorophyll fluorescence in intact leaves

    No full text
    Paper describes principles and application of a novel routine that enables the quantitative analysis of the photochemical O-J phase of the variable fluorescence F v associated with the reversible photo-reduction of the secondary electron acceptor QA of photosystem II (PSII) in algae and intact leaves. The kinetic parameters that determine the variable fluorescence F PP(t) associated with the release of photochemical quenching are estimated from 10 μs time-resolved light-on and light-off responses of F v induced by two subsequent light pulses of 0.25 (default) and 1000 ms duration, respectively. Application of these pulses allows estimations of (i) the actual value of the rate constants k L and k AB of the light excitation (photoreduction of QA) and of the dark re-oxidation of photoreduced QA (QA -), respectively, (ii) the actual maximal normalized variable fluorescence [nF v] associated with 100 % photoreduction of QA of open RCs, and (iii) the actual size β of RCs in which the re-oxidation of QA - is largely suppressed (QB-nonreducing RC with k AB ~ 0). The rate constants of the dark reversion of Fv associated with the release of photo-electrochemical quenching F PE and photo-electric stimulation F CET in the successive J-I and I-P parts of the thermal phase are in the range of (100 ms)-1 and (1 s)-1, respectively. The kinetics of fluorescence changes during and after the I-P phase are given special attention in relation to the hypothesis on the involvement of a Δμ H+-dependent effect during this phase and thereafter. Paper closes with author's personal view on the demands that should be fulfilled for chlorophyll fluorescence methods being a correct and unchallenged signature of photosynthesis in algae and plants
    corecore