37 research outputs found

    Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nowadays, the focus in metabolic engineering research is shifting from massive overexpression and inactivation of genes towards the model-based fine tuning of gene expression. In this context, the construction of a library of synthetic promoters of <it>Escherichia coli </it>as a useful tool for fine tuning gene expression is discussed here.</p> <p>Results</p> <p>A degenerated oligonucleotide sequence that encodes consensus sequences for <it>E. coli </it>promoters separated by spacers of random sequences has been designed and synthesized. This 57 bp long sequence contains 24 conserved, 13 semi-conserved (W, R and D) and 20 random nucleotides. This mixture of DNA fragments was cloned into a promoter probing vector (pVIK165). The ligation mixtures were transformed into competent <it>E. coli </it>MA8 and the resulting clones were screened for GFP activity by measuring the relative fluorescence units; some clones produced high fluorescence intensity, others weak fluorescence intensity. The clones cover a range of promoter activities from 21.79 RFU/OD<sub>600 </sub>ml to 7606.83 RFU/OD<sub>600 </sub>ml. 57 promoters were sequenced and used for promoter analysis. The present results conclusively show that the postulates, which link promoter strength to anomalies in the -10 box and/or -35 box, and to the length of the spacer, are not generally valid. However, by applying Partial Least Squares regression, a model describing the promoter strength was built and validated.</p> <p>Conclusion</p> <p>For <it>Escherichia coli</it>, the promoter strength can not been linked to anomalies in the -10 box and/or -35 box, and to the length of the spacer. Also a probabilistic approach to relate the promoter sequence to its strength has some drawbacks. However, by applying Partial Least Squares regression, a good correlation was found between promoter sequence and promoter strength. This PLS model can be a useful tool to rationally design a suitable promoter in order to fine tune gene expression.</p

    Promoter knock-in: a novel rational method for the fine tuning of genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic engineering aims at channeling the metabolic fluxes towards a desired compound. An important strategy to achieve this is the modification of the expression level of specific genes. Several methods for the modification or the replacement of promoters have been proposed, but most of them involve time-consuming screening steps. We describe here a novel optimized method for the insertion of constitutive promoters (referred to as "promoter knock-in") whose strength can be compared with the native promoter by applying a promoter strength predictive (PSP) model.</p> <p>Results</p> <p>Our method was successfully applied to fine tune the <it>ppc </it>gene of <it>Escherichia coli</it>. While developing the promoter knock-in methodology, we showed the importance of conserving the natural leader region containing the ribosome binding site (RBS) of the gene of interest and of eliminating upstream regulatory elements (transcription factor binding sites). The gene expression was down regulated instead of up regulated when the natural RBS was not conserved and when the upstream regulatory elements were eliminated. Next, three different promoter knock-ins were created for the <it>ppc </it>gene selecting three different artificial promoters. The measured constitutive expression of the <it>ppc </it>gene in these knock-ins reflected the relative strength of the different promoters as predicted by the PSP model. The applicability of our PSP model and promoter knock-in methodology was further demonstrated by showing that the constitutivity and the relative levels of expression were independent of the genetic background (comparing wild-type and mutant <it>E. coli </it>strains). No differences were observed during scaling up from shake flask to bioreactor-scale, confirming that the obtained expression was independent of environmental conditions.</p> <p>Conclusion</p> <p>We are proposing a novel methodology for obtaining appropriate levels of expression of genes of interest, based on the prediction of the relative strength of selected synthetic promoters combined with an optimized promoter knock-in strategy. The obtained expression levels are independent of the genetic background and scale conditions. The method constitutes therefore a valuable addition to the genetic toolbox for the metabolic engineering of <it>E. coli</it>.</p

    Glucansucrase (mutant) enzymes from Lactobacillus reuteri 180 efficiently transglucosylate Stevia component rebaudioside A, resulting in a superior taste

    Get PDF
    Steviol glycosides from the leaves of the plant Stevia rebaudiana are high-potency natural sweeteners but suffer from a lingering bitterness. The Lactobacillus reuteri 180 wild-type glucansucrase Gtf180-ΔN, and in particular its Q1140E-mutant, efficiently α-glucosylated rebaudioside A (RebA), using sucrose as donor substrate. Structural analysis of the products by MALDI-TOF mass spectrometry, methylation analysis and NMR spectroscopy showed that both enzymes exclusively glucosylate the Glc(β1→C-19 residue of RebA, with the initial formation of an (α1→6) linkage. Docking of RebA in the active site of the enzyme revealed that only the steviol C-19 β-D-glucosyl moiety is available for glucosylation. Response surface methodology was applied to optimize the Gtf180-ΔN-Q1140E-catalyzed α-glucosylation of RebA, resulting in a highly productive process with a RebA conversion of 95% and a production of 115 g/L α-glucosylated products within 3 h. Development of a fed-batch reaction allowed further suppression of α-glucan synthesis which improved the product yield to 270 g/L. Sensory analysis by a trained panel revealed that glucosylated RebA products show a significant reduction in bitterness, resulting in a superior taste profile compared to RebA. The Gtf180-ΔN-Q1140E glucansucrase mutant enzyme thus is an efficient biocatalyst for generating α-glucosylated RebA variants with improved edulcorant/organoleptic properties
    corecore