102 research outputs found

    Validation of automated Alberta Stroke Program Early CT Score (ASPECTS) software for detection of early ischemic changes on non-contrast brain CT scans

    Get PDF
    Purpose: In ASPECTS, 10 brain regions are scored visually for presence of acute ischemic stroke damage. We evaluated automated ASPECTS in comparison to expert readers. Methods: Consecutive, baseline non-contrast CT-scans (5-mm slice thickness) from the prospective MR CLEAN trial (n = 459, MR CLEAN Netherlands Trial Registry number: NTR1804) were evaluated. A two-observer consensus for ASPECTS regions (normal/abnormal) was used as reference standard for training and testing (0.2/0.8 division). Two other observers provided individual ASPECTS-region scores. The Automated ASPECTS software was applied. A region score specificity of ≥ 90% was used to determine the software threshold for detection of an affected region based on relative density difference between affected and contralateral region. Sensitivity, specificity, and receiver-operating characteristic curves were calculated. Additionally, we assessed intraclass correlation coefficients (ICCs) for automated ASPECTS and observers in comparison to the reference standard in the test set. Results: In the training set (n = 104), with software thresholds for a specificity of ≥ 90%, we found a sensitivity of 33–49% and an area under the curve (AUC) of 0.741–0.785 for detection of an affected ASPECTS region. In the test set (n = 355), the results for the found software thresholds were 89–89% (specificity), 41–57% (sensitivity), and 0.750–0.795 (AUC). Comparison of automated ASPECTS with the reference standard resulted in an ICC of 0.526. Comparison of observers with the reference standard resulted in an ICC of 0.383–0.464. Conclusion: The performance of automated ASPECTS is comparable to expert readers and could support readers in the detection of early ischemic changes

    Diagnostic performance of an algorithm for automated large vessel occlusion detection on CT angiography

    Get PDF
    BACKGROUND: Machine learning algorithms hold the potential to contribute to fast and accurate detection of large vessel occlusion (LVO) in patients with suspected acute ischemic stroke. We assessed the diagnostic performance of an automated LVO detection algorithm on CT angiography (CTA). METHODS: Data from the MR CLEAN Registry and PRESTO were used including patients with and without LVO. CTA data were analyzed by the algorithm for detection and localization of LVO (intracranial internal carotid artery (ICA)/ICA terminus (ICA-T), M1, or M2). Assessments done by expert neuroradiologists were used as reference. Diagnostic performance was assessed for detection of LVO and per occlusion location by means of sensitivity, specificity, and area under the curve (AUC). RESULTS: We analyzed CTAs of 1110 patients from the MR CLEAN Registry (median age (IQR) 71 years (60-80); 584 men; 1110 with LVO) and of 646 patients from PRESTO (median age (IQR) 73 years (62-82); 358 men; 141 with and 505 without LVO). For detection of LVO, the algorithm yielded a sensitivity of 89% in the MR CLEAN Registry and a sensitivity of 72%, specificity of 78%, and AUC of 0.75 in PRESTO. Sensitivity per occlusion location was 88% for ICA/ICA-T, 94% for M1, and 72% for M2 occlusion in the MR CLEAN Registry, and 80% for ICA/ICA-T, 95% for M1, and 49% for M2 occlusion in PRESTO. CONCLUSION: The algorithm provided a high detection rate for proximal LVO, but performance varied significantly by occlusion location. Detection of M2 occlusion needs further improvement
    corecore