112 research outputs found

    Type II secretion: from structure to function

    Full text link
    Gram-negative bacteria use the type II secretion system to transport a large number of secreted proteins from the periplasmic space into the extracellular environment. Many of the secreted proteins are major virulence factors in plants and animals. The components of the type II secretion system are located in both the inner and outer membranes where they assemble into a multi-protein, cell-envelope spanning, complex. This review discusses recent progress, particularly newly published structures obtained by X-ray crystallography and electron microscopy that have increased our understanding of how the type II secretion apparatus functions and the role that individual proteins play in this complex system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74575/1/j.1574-6968.2006.00102.x.pd

    Crystal Structures, Metal Activation, and DNA-Binding Properties of Two-Domain IdeR from Mycobacterium tuberculosis

    Get PDF
    The iron-dependent regulator IdeR is a key transcriptional regulator of iron uptake in Mycobacterium tuberculosis. In order to increase our insight into the role of the SH3-like third domain of this essential regulator, the metal-binding and DNA-binding properties of two-domain IdeR (2D-IdeR) whose SH3-like domain has been truncated were characterized. The equilibrium dissociation constants for Co^(2+) and Ni^(2+) activation of 2D-IdeR for binding to the fxbA operator and the DNA-binding affinities of 2D-IdeR in the presence of excess metal ions were estimated using fluorescence spectroscopy. 2D-IdeR binds to fxbA operator DNA with similar affinity as full-length IdeR in the presence of excess metal ion. However, the Ni^(2+) concentrations required to activate 2D-IdeR for DNA binding appear to be smaller than that for full-length IdeR while the concentration of Co^(2+) required for activation remains the same. We have determined the crystal structures of Ni^(2+)-activated 2D-IdeR at 1.96 Å resolution and its double dimer complex with the mbtA-mbtB operator DNA in two crystal forms at 2.4 Å and 2.6 Å, the highest resolutions for DNA complexes for any structures of iron-dependent regulator family members so far. The 2D-IdeR−DNA complex structures confirm the specificity of Ser37 and Pro39 for thymine bases and suggest preferential contacts of Gln43 to cytosine bases of the DNA. In addition, our 2D-IdeR structures reveal a remarkable property of the TEV cleavage sequence remaining after removal of the C-terminal His_6. This C-terminal tail promotes crystal contacts by forming a β-sheet with the corresponding tail of neighboring subunits in two unrelated structures of 2D-IdeR, one with and one without DNA. The contact-promoting properties of this C-terminal TEV cleavage sequence may be beneficial for crystallizing other proteins

    Crystal Structures, Metal Activation, and DNA-Binding Properties of Two-Domain IdeR from Mycobacterium tuberculosis

    Get PDF
    The iron-dependent regulator IdeR is a key transcriptional regulator of iron uptake in Mycobacterium tuberculosis. In order to increase our insight into the role of the SH3-like third domain of this essential regulator, the metal-binding and DNA-binding properties of two-domain IdeR (2D-IdeR) whose SH3-like domain has been truncated were characterized. The equilibrium dissociation constants for Co^(2+) and Ni^(2+) activation of 2D-IdeR for binding to the fxbA operator and the DNA-binding affinities of 2D-IdeR in the presence of excess metal ions were estimated using fluorescence spectroscopy. 2D-IdeR binds to fxbA operator DNA with similar affinity as full-length IdeR in the presence of excess metal ion. However, the Ni^(2+) concentrations required to activate 2D-IdeR for DNA binding appear to be smaller than that for full-length IdeR while the concentration of Co^(2+) required for activation remains the same. We have determined the crystal structures of Ni^(2+)-activated 2D-IdeR at 1.96 Å resolution and its double dimer complex with the mbtA-mbtB operator DNA in two crystal forms at 2.4 Å and 2.6 Å, the highest resolutions for DNA complexes for any structures of iron-dependent regulator family members so far. The 2D-IdeR−DNA complex structures confirm the specificity of Ser37 and Pro39 for thymine bases and suggest preferential contacts of Gln43 to cytosine bases of the DNA. In addition, our 2D-IdeR structures reveal a remarkable property of the TEV cleavage sequence remaining after removal of the C-terminal His_6. This C-terminal tail promotes crystal contacts by forming a β-sheet with the corresponding tail of neighboring subunits in two unrelated structures of 2D-IdeR, one with and one without DNA. The contact-promoting properties of this C-terminal TEV cleavage sequence may be beneficial for crystallizing other proteins

    Neospora caninum calcium-dependent protein kinase 1 is an effective drug target for neosporosis therapy.

    Get PDF
    Despite the enormous economic importance of Neospora caninum related veterinary diseases, the number of effective therapeutic agents is relatively small. Development of new therapeutic strategies to combat the economic impact of neosporosis remains an important scientific endeavor. This study demonstrates molecular, structural and phenotypic evidence that N. caninum calcium-dependent protein kinase 1 (NcCDPK1) is a promising molecular target for neosporosis drug development. Recombinant NcCDPK1 was expressed, purified and screened against a select group of bumped kinase inhibitors (BKIs) previously shown to have low IC50s against Toxoplasma gondii CDPK1 and T. gondii tachyzoites. NcCDPK1 was inhibited by low concentrations of BKIs. The three-dimensional structure of NcCDPK1 in complex with BKIs was studied crystallographically. The BKI-NcCDPK1 structures demonstrated the structural basis for potency and selectivity. Calcium-dependent conformational changes in solution as characterized by small-angle X-ray scattering are consistent with previous structures in low Calcium-state but different in the Calcium-bound active state than predicted by X-ray crystallography. BKIs effectively inhibited N. caninum tachyzoite proliferation in vitro. Electron microscopic analysis of N. caninum cells revealed ultra-structural changes in the presence of BKI compound 1294. BKI compound 1294 interfered with an early step in Neospora tachyzoite host cell invasion and egress. Prolonged incubation in the presence of 1294 interfered produced observable interference with viability and replication. Oral dosing of BKI compound 1294 at 50 mg/kg for 5 days in established murine neosporosis resulted in a 10-fold reduced cerebral parasite burden compared to untreated control. Further experiments are needed to determine the PK, optimal dosage, and duration for effective treatment in cattle and dogs, but these data demonstrate proof-of-concept for BKIs, and 1294 specifically, for therapy of bovine and canine neosporosis

    The variable effective dielectric constant and the importance of the direction of the peptide dipole moment: An investigation of dipole—dipole interactions in αα- and βαβ-units of proteins

    No full text
    Electrostatic interactions between the peptide dipoles in α-helices and in parallel β-strands have been investigated. The “dielectric screening factor”, or “effective dielectric constant”, has been evaluated for two α-helix dipoles, surrounded by water, using the method of image charges. The effective dielectric “constant” appears to vary considerably. One of the most important factors determining its value is the distance of the charges to the solvent surrounding the helices. The parallel β-sheet has a small, but significant, dipole moment if the direction of the individual peptide dipole moment runs parallel to the NH and CO bonds. Then, a stabilization of βαβ-units as observed in actual proteins occurs by favourable electrostatic interactions between the dipole moments of the α-helix and the β-strands. This interaction energy appears, however, to be very sensitive to the charge distribution selected to represent the peptide dipole moment. Therefore, further investigations of the backbone dipole moment of β-strands and β-sheets are essential in order to obtain correct values for the electrostatic energies of globular protein molecules
    corecore