328 research outputs found

    The growth and harvesting of algae in a micro-gravity environment

    Get PDF
    Algae growth in a micro-gravity environment is an important factor in supporting man's permanent presence in space. Algae can be used to produce food, oxygen, and pure water in a manned space station. A space station is one example of a situation where a Controlled Ecological Life Support System (CELSS) is imperative. In setting up a CELSS with an engineering approach at the Aerospace department of the University of Colorado, questions concerning algae growth in micro-g have arisen. The Get Away Special (GAS) Fluids Management project is a means through which many questions about the effects of a micro-g environment on the adequacy of growth rates, the viability of micro-organisms, and separation of gases and solids for harvesting purposes can be answered. In order to be compatible with the GAS tests, the algae must satisfy the following criteria: (1) rapid growth rates, (2) sustain viability over long periods of non-growth storage, and (3) very brief latency from storage to rapid growth. Testing indicates that the overall growth characteristics of Anacystis Nidulans satisfy the specifications of GAS's design constraints. In addition, data acquisition and the method of growth instigation are two specific problems being examined, as they will be encountered in interfacing with the GAS project. Flight testing will be two-fold, measurement of algae growth in micro-g and separation of algae from growth medium in an artificial gravitation field. Post flight results will provide information on algae viability in a micro-g environment as reflected by algal growth rates in space. Other post flight results will provide a basis for evaluating techniques for harvesting algae. The results from the GAS project will greatly assist the continuing effort of developing the CELSS and its applications for space

    Efficient simulation of incompressible viscous flow over multi-element airfoils

    Get PDF
    The incompressible, viscous, turbulent flow over single and multi-element airfoils is numerically simulated in an efficient manner by solving the incompressible Navier-Stokes equations. The computer code uses the method of pseudo-compressibility with an upwind-differencing scheme for the convective fluxes and an implicit line-relaxation solution algorithm. The motivation for this work includes interest in studying the high-lift take-off and landing configurations of various aircraft. In particular, accurate computation of lift and drag at various angles of attack, up to stall, is desired. Two different turbulence models are tested in computing the flow over an NACA 4412 airfoil; an accurate prediction of stall is obtained. The approach used for multi-element airfoils involves the use of multiple zones of structured grids fitted to each element. Two different approaches are compared: a patched system of grids, and an overlaid Chimera system of grids. Computational results are presented for two-element, three-element, and four-element airfoil configurations. Excellent agreement with experimental surface pressure coefficients is seen. The code converges in less than 200 iterations, requiring on the order of one minute of CPU time (on a CRAY YMP) per element in the airfoil configuration

    Three-dimensional unstructured grid generation via incremental insertion and local optimization

    Get PDF
    Algorithms for the generation of 3D unstructured surface and volume grids are discussed. These algorithms are based on incremental insertion and local optimization. The present algorithms are very general and permit local grid optimization based on various measures of grid quality. This is very important; unlike the 2D Delaunay triangulation, the 3D Delaunay triangulation appears not to have a lexicographic characterization of angularity. (The Delaunay triangulation is known to minimize that maximum containment sphere, but unfortunately this is not true lexicographically). Consequently, Delaunay triangulations in three-space can result in poorly shaped tetrahedral elements. Using the present algorithms, 3D meshes can be constructed which optimize a certain angle measure, albeit locally. We also discuss the combinatorial aspects of the algorithm as well as implementational details

    MEETING AT THE THRESHOLD: SLAVERY’S INFLUENCE ON HOSPITALITY AND BLACK PERSONHOOD IN LATE-ANTEBELLUM AMERICAN LITERATURE

    Get PDF
    In my dissertation, I argue that both white and black authors of the late-1850s and early-1860s used scenes of race-centered hospitality in their narratives to combat the pervasive stereotypes of black inferiority that flourished under the influence of chattel slavery. The wide-spread scenes of hospitality in antebellum literature—including shared meals, entertaining overnight guests, and business meetings in personal homes—are too inextricably bound to contemporary discussions of blackness and whiteness to be ignored. In arguing for the humanizing effects of playing host or guest as a black person, my project joins the work of literary scholars from William L. Andrews to Keith Michael Green who argue for broader and more complex approaches to writers’ strategies for recognizing the full personhood of African Americans in the mid-nineteenth century. In the last fifteen to twenty years, hospitality theory has reshaped social science research, particularly around issues of race, immigration, and citizenship. In literary studies, scholars are only now beginning to mine the ways that theorists from diverse backgrounds—including continental philosophers such as Derrida and Levinas, womanist philosopher and theologian N. Lynne Westerfield, and post-colonial writers and scholars such as Tahar Ben Jelloun—can expand the reading of nineteenth century literature by examining the discourse and practice of hospitality. When host and guest meet at the threshold they must acknowledge the full personhood of the other; the relationship of hospitality is dependent on beginning in a state of equilibrium grounded in mutual respect. In this project I argue that because of the acknowledgement of mutual humanness required in acts of hospitality, hospitality functions as a humanizing narrative across the spectrum of antebellum black experience: slave and free, male and female, uneducated and highly educated. In chapter one, “Unmasking Southern Hospitality: Discursive Passing in Harriet Beecher Stowe’s Dred,” I examine Stowe’s use of a black fugitive slave host who behaves like a southern gentleman to undermine the ethos of southern honor culture and to disrupt the ideology that supports chattel slavery. In chapter two, “Transformative Hospitality and Interracial Education in Webb’s The Garies and Their Friends,” I examine how the race-centered scenes of hospitality in Frank J. Webb’s 1857 novel The Garies and Their Friends creates educational opportunities where northern racist ideology can be uncovered and rejected by white men and women living close to, but still outside, the free black community of Philadelphia. In the final chapter, “Slavery’s Subversion of Hospitality in Jacobs’s Incidents in the Life of a Slave Girl,” I examine how Linda Brent’s engagement in acts of hospitality (both as guest and host) bring to light the warping influence of chattel slavery on hospitality in Harriet Jacobs’s Incidents in the Life of a Slave Girl. In conclusion, my project reframes the practices of antebellum hospitality as yet another form of nonviolent everyday resistance to racist ideology rampant in both the North and the South. This project furthers the ways that American literature scholars understand active resistance to racial oppression in the nineteenth century, putting hospitality on an equal footing with other subversive practices, such as learning to read or racial passing

    Magnetospheric Cavity Modes Driven by Solar Wind Dynamic Pressure Fluctuations

    Full text link
    We present results from Lyon-Fedder-Mobarry (LFM) global, three-dimensional magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere interaction. We use these simulations to investigate the role that solar wind dynamic pressure fluctuations play in the generation of magnetospheric ultra-low frequency (ULF) pulsations. The simulations presented in this study are driven with idealized solar wind input conditions. In four of the simulations, we introduce monochromatic ULF fluctuations in the upstream solar wind dynamic pressure. In the fifth simulation, we introduce a continuum of ULF frequencies in the upstream solar wind dynamic pressure fluctuations. In this numerical experiment, the idealized nature of the solar wind driving conditions allows us to study the magnetospheric response to only a fluctuating upstream dynamic pressure, while holding all other solar wind driving parameters constant. The simulation results suggest that ULF fluctuations in the solar wind dynamic pressure can drive magnetospheric ULF pulsations in the electric and magnetic fields on the dayside. Moreover, the simulation results suggest that when the driving frequency of the solar wind dynamic pressure fluctuations matches one of the natural frequencies of the magnetosphere, magnetospheric cavity modes can be energized.Comment: 2 figure

    Anomalous electron heating effects on the E region ionosphere in TIEGCM

    Full text link
    We have recently implemented a new module that includes both the anomalous electron heating and the electron‐neutral cooling rate correction associated with the Farley‐Buneman Instability (FBI) in the thermosphere‐ionosphere electrodynamics global circulation model (TIEGCM). This implementation provides, for the first time, a modeling capability to describe macroscopic effects of the FBI on the ionosphere and thermosphere in the context of a first‐principle, self‐consistent model. The added heating sources primarily operate between 100 and 130 km altitude, and their magnitudes often exceed auroral precipitation heating in the TIEGCM. The induced changes in E region electron temperature in the auroral oval and polar cap by the FBI are remarkable with a maximum Te approaching 2200 K. This is about 4 times larger than the TIEGCM run without FBI heating. This investigation demonstrates how researchers can add the important effects of the FBI to magnetosphere‐ionosphere‐thermosphere models and simulators.NNX14Al13G - NASA GCR; NASA LWS; NNX14AE06G; NNX15AB83G; NNX12AJ54G - NASA HGI; ACI-1053575 - National Science Foundatio

    Incremental triangulation by way of edge swapping and local optimization

    Get PDF
    This document is intended to serve as an installation, usage, and basic theory guide for the two dimensional triangulation software 'HARLEY' written for the Silicon Graphics IRIS workstation. This code consists of an incremental triangulation algorithm based on point insertion and local edge swapping. Using this basic strategy, several types of triangulations can be produced depending on user selected options. For example, local edge swapping criteria can be chosen which minimizes the maximum interior angle (a MinMax triangulation) or which maximizes the minimum interior angle (a MaxMin or Delaunay triangulation). It should be noted that the MinMax triangulation is generally only locally optical (not globally optimal) in this measure. The MaxMin triangulation, however, is both locally and globally optical. In addition, Steiner triangulations can be constructed by inserting new sites at triangle circumcenters followed by edge swapping based on the MaxMin criteria. Incremental insertion of sites also provides flexibility in choosing cell refinement criteria. A dynamic heap structure has been implemented in the code so that once a refinement measure is specified (i.e., maximum aspect ratio or some measure of a solution gradient for the solution adaptive grid generation) the cell with the largest value of this measure is continually removed from the top of the heap and refined. The heap refinement strategy allows the user to specify either the number of cells desired or refine the mesh until all cell refinement measures satisfy a user specified tolerance level. Since the dynamic heap structure is constantly updated, the algorithm always refines the particular cell in the mesh with the largest refinement criteria value. The code allows the user to: triangulate a cloud of prespecified points (sites), triangulate a set of prespecified interior points constrained by prespecified boundary curve(s), Steiner triangulate the interior/exterior of prespecified boundary curve(s), refine existing triangulations based on solution error measures, and partition meshes based on the Cuthill-McKee, spectral, and coordinate bisection strategies

    CIS-lunar space infrastructure lunar technologies: Executive summary

    Get PDF
    Technologies necessary for the creation of a cis-Lunar infrastructure, namely: (1) automation and robotics; (2) life support systems; (3) fluid management; (4) propulsion; and (5) rotating technologies, are explored. The technological focal point is on the development of automated and robotic systems for the implementation of a Lunar Oasis produced by Automation and Robotics (LOAR). Under direction from the NASA Office of Exploration, automation and robotics were extensively utilized as an initiating stage in the return to the Moon. A pair of autonomous rovers, modular in design and built from interchangeable and specialized components, is proposed. Utilizing a buddy system, these rovers will be able to support each other and to enhance their individual capabilities. One rover primarily explores and maps while the second rover tests the feasibility of various materials-processing techniques. The automated missions emphasize availability and potential uses of Lunar resources, and the deployment and operations of the LOAR program. An experimental bio-volume is put into place as the precursor to a Lunar environmentally controlled life support system. The bio-volume will determine the reproduction, growth and production characteristics of various life forms housed on the Lunar surface. Physicochemical regenerative technologies and stored resources will be used to buffer biological disturbances of the bio-volume environment. The in situ Lunar resources will be both tested and used within this bio-volume. Second phase development on the Lunar surface calls for manned operations. Repairs and re-configuration of the initial framework will ensue. An autonomously-initiated manned Lunar oasis can become an essential component of the United States space program

    Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere

    Get PDF
    We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics
    • 

    corecore