24 research outputs found

    Situating emotional experience

    Get PDF
    Psychological construction approaches to emotion suggest that emotional experience is situated and dynamic. Fear, for example, is typically studied in a physical danger context (e.g., threatening snake), but in the real world, it often occurs in social contexts, especially those involving social evaluation (e.g., public speaking). Understanding situated emotional experience is critical because adaptive responding is guided by situational context (e.g., inferring the intention of another in a social evaluation situation vs. monitoring the environment in a physical danger situation). In an fMRI study, we assessed situated emotional experience using a newly developed paradigm in which participants vividly imagine different scenarios from a first-person perspective, in this case scenarios involving either social evaluation or physical danger. We hypothesized that distributed neural patterns would underlie immersion in social evaluation and physical danger situations, with shared activity patterns across both situations in multiple sensory modalities and in circuitry involved in integrating salient sensory information, and with unique activity patterns for each situation type in coordinated large-scale networks that reflect situated responding. More specifically, we predicted that networks underlying the social inference and mentalizing involved in responding to a social threat (in regions that make up the “default mode” network) would be reliably more active during social evaluation situations. In contrast, networks underlying the visuospatial attention and action planning involved in responding to a physical threat would be reliably more active during physical danger situations. The results supported these hypotheses. In line with emerging psychological construction approaches, the findings suggest that coordinated brain networks offer a systematic way to interpret the distributed patterns that underlie the diverse situational contexts characterizing emotional life

    Primary interoceptive cortex activity during simulated experiences of the body

    Get PDF
    Studies of the classic exteroceptive sensory systems (e.g., vision, touch) consistently demonstrate that vividly imagining a sensory experience of the world – simulating it – is associated with increased activity in the corresponding primary sensory cortex. We hypothesized, analogously, that simulating internal bodily sensations would be associated with increased neural activity in primary interoceptive cortex. An immersive, language-based mental imagery paradigm was used to test this hypothesis (e.g., imagine your heart pounding during a roller coaster ride, your face drenched in sweat during a workout). During two neuroimaging experiments, participants listened to vividly described situations and imagined “being there” in each scenario. In Study 1, we observed significantly heightened activity in primary interoceptive cortex (of dorsal posterior insula) during imagined experiences involving vivid internal sensations. This effect was specific to interoceptive simulation: it was not observed during a separate affect focus condition in Study 1, nor during an independent Study 2 that did not involve detailed simulation of internal sensations (instead involving simulation of other sensory experiences). These findings underscore the large-scale predictive architecture of the brain and reveal that words can be powerful drivers of bodily experiences

    Learning situated emotions

    Get PDF
    From the perspective of constructivist theories, emotion results from learning assemblies of relevant perceptual, cognitive, interoceptive, and motor processes in specific situations. Across emotional experiences over time, learned assemblies of processes accumulate in memory that later underlie emotional experiences in similar situations. A neuroimaging experiment guided participants to experience (and thus learn) situated forms of emotion, and then assessed whether participants tended to experience situated forms of the emotion later. During the initial learning phase, some participants immersed themselves in vividly imagined fear and anger experiences involving physical harm, whereas other participants immersed themselves in vividly imagined fear and anger experiences involving negative social evaluation. In the subsequent testing phase, both learning groups experienced fear and anger while their neural activity was assessed with functional magnetic resonance imaging (fMRI). A variety of results indicated that the physical and social learning groups incidentally learned different situated forms of a given emotion. Consistent with constructivist theories, these findings suggest that learning plays a central role in emotion, with emotion adapted to the situations in which it is experienced

    Putting everything in context

    No full text
    In response to Casasanto, Brookshire, and Ivry (2015), we address four points: First, we engaged in conceptual replications of Brookshire, Casasanto, and Ivry (2010), not direct replications. Second, we did not question the validity of Brookshire et al.'s (2010) results, nor the similar findings of other researchers, but instead explained divergent findings within an integrated theoretical framework. Third, challenges to the construct of automaticity, including ours, were widespread, long before Brookshire et al.'s (2010) article. Fourth, the planned comparisons that we reported tested our theoretical claims and offered strong evidence for them

    Are automatic conceptual cores the gold standard of semantic processing? The context-dependence of spatial meaning in grounded congruency effects

    No full text
    According to grounded cognition, words whose semantics contain sensory-motor features activate sensory-motor simulations, which, in turn, interact with spatial responses to produce grounded congruency effects (e.g., processing the spatial feature of up for sky should be faster for up vs. down responses). Growing evidence shows these congruency effects do not always occur, suggesting instead that the grounded features in a word's meaning do not become active automatically across contexts. Researchers sometimes use this as evidence that concepts are not grounded, further concluding that grounded information is peripheral to the amodal cores of concepts. We first review broad evidence that words do not have conceptual cores, and that even the most salient features in a word's meaning are not activated automatically. Then, in three experiments, we provide further evidence that grounded congruency effects rely dynamically on context, with the central grounded features in a concept becoming active only when the current context makes them salient. Even when grounded features are central to a word's meaning, their activation depends on task conditions

    Finite and infinite graphs with the Koenig property

    No full text
    TIB: RN 3109 (182) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Contextual processing of abstract concepts reveals neural representations of nonlinguistic semantic content

    No full text
    Concepts develop for many aspects of experience, including abstract internal states and abstract social activities that do not refer to concrete entities in the world. The current study assessed the hypothesis that, like concrete concepts, distributed neural patterns of relevant nonlinguistic semantic content represent the meanings of abstract concepts. In a novel neuroimaging paradigm, participants processed two abstract concepts (convince, arithmetic) and two concrete concepts (rolling, red) deeply and repeatedly during a concept–scene matching task that grounded each concept in typical contexts. Using a catch trial design, neural activity associated with each concept word was separated from neural activity associated with subsequent visual scenes to assess activations underlying the detailed semantics of each concept. We predicted that brain regions underlying mentalizing and social cognition (e.g., medial prefrontal cortex, superior temporal sulcus) would become active to represent semantic content central to convince, whereas brain regions underlying numerical cognition (e.g., bilateral intraparietal sulcus) would become active to represent semantic content central to arithmetic. The results supported these predictions, suggesting that the meanings of abstract concepts arise from distributed neural systems that represent concept-specific content

    Grounding emotion in situated conceptualization

    No full text
    According to the Conceptual Act Theory of Emotion, the situated conceptualization used to construe a situation determines the emotion experienced. A neuroimaging experiment tested two core hypotheses of this theory: (1) different situated conceptualizations produce different forms of the same emotion in different situations, (2) the composition of a situated conceptualization emerges from shared multimodal circuitry distributed across the brain that produces emotional states generally. To test these hypotheses, the situation in which participants experienced an emotion was manipulated. On each trial, participants immersed themselves in a physical danger or social evaluation situation and then experienced fear or anger. According to Hypothesis 1, the brain activations for the same emotion should differ as a function of the preceding situation (after removing activations that arose while constructing the situation). According to Hypothesis 2, the critical activations should reflect conceptual processing relevant to the emotion in the current situation, drawn from shared multimodal circuitry underlying emotion. The results supported these predictions and demonstrated the compositional process that produces situated conceptualizations dynamically
    corecore