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Abstract 
From the perspective of constructivist theories, emotion results from learning assemblies of relevant 

perceptual, cognitive, interoceptive, and motor processes in specific situations.  Across emotional 

experiences over time, learned assemblies of processes accumulate in memory that later underlie 

emotional experiences in similar situations.  A neuroimaging experiment guided participants to 

experience (and thus learn) situated forms of emotion, and then assessed whether participants tended to 

experience situated forms of the emotion later.  During the initial learning phase, some participants 

immersed themselves in vividly imagined fear and anger experiences involving physical harm, whereas 

other participants immersed themselves in vividly imagined fear and anger experiences involving 

negative social evaluation.  In the subsequent testing phase, both learning groups experienced fear and 

anger while their neural activity was assessed with functional magnetic resonance imaging (fMRI).  A 

variety of results indicated that the physical and social learning groups incidentally learned different 

situated forms of a given emotion.  Consistent with constructivist theories, these findings suggest that 

learning plays a central role in emotion, with emotion adapted to the situations in which it is 

experienced. 
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According to constructivist theories, emotions take situation-specific forms (e.g., Barrett, 2006a, 

2006b, 2012, 2013, 2014, 2017; Gendron & Barrett, 2009; Wilson-Mendenhall, Barrett, Simmons, & 

Barsalou, 2011; Wilson-Mendenhall & Barsalou, 2016).  In a situation that affords emotion, an 

emotional state is assembled from perceptual, cognitive, interoceptive, and motor processes relevant for 

interpreting and coordinating both physical and cognitive responses to the situation.  Imagine, for 

example, stepping into a cross walk as a speeding car running a red light approaches suddenly from the 

left.  The fear experienced might engage perceptual processes for sensing physical threat, cognitive 

processes for imagining bodily harm, interoceptive processes for mobilizing action, and motor processes 

for avoiding the approaching vehicle.  Alternatively, imagine being at a dinner party, failing to read the 

social milieu properly, and impulsively saying something offensive, such that an angry silence ensues.  

The fear experienced in this situation might engage perceptual processes for sensing social threat, 

cognitive processes for imagining social exclusion, interoceptive processes for inhibiting further 

impulsive comments, and motor processes for expressing regret facially and verbally. 

From the constructivist perspective, different forms of an emotion are constructed dynamically 

in specific situations, with each form producing an emotional experience adapted to current conditions.  

Fear, for example, takes still more different forms during mechanical difficulties on a plane, losing 

one’s job, choking on food, losing one’s spouse, and so on.  We further assume that as different forms 

of an emotion are experienced, they become established in long-term memory as situated memories, 

which later influence emotional experiences in similar situations.  When perceiving another rapidly 

approaching car on a subsequent occasion, the situational memory from the previous occasion becomes 

active, implicitly and rapidly, coordinating the cognitive, interoceptive, and motor processes that 

produce fear in the situation.  The current study was designed to assess whether experiencing emotions 

such fear and anger repeatedly in specific kinds of situations induces situation-specific emotional 

experiences when experiencing these situations again later. 

Situated conceptualization.  We utilize the construct of situated conceptualization to explain 

how situated forms of emotion are learned (Barsalou, 2003b, 2009, 2013, 2016a,b; Barsalou, 

Niedenthal, Barbey, & Ruppert, 2003; Yeh & Barsalou, 2006).  According to this account, the brain is 
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a situation processing architecture, with multiple networks simultaneously using concepts in memory 

to interpret various elements of the current situation, including the setting, agents, objects, actions, 

events, mental states, and self-relevance.  As these individual elements are each conceptualized, a 

global conceptualization of the situation assembles them into a coherent interpretation of what is 

occurring across the situation as a whole (e.g., how an event bears on one’s self interests, how various 

coping actions might regulate the situation and one’s bodily responses to it; cf. Lazarus, 1991).  

Together, these elemental and global conceptualizations establish a situated conceptualization that 

represents and interprets the situation at multiple levels.  While consuming a croissant at a coffee 

house, for example, a situated conceptualization is constructed that includes conceptualizations of the 

coffee house, the croissant, its goal relevance, eating, and the emotion experienced. 

As a situated conceptualization becomes assembled to interpret a situation, it is superimposed 

on memory via associative mechanisms.  Once stored, it can later be reactivated when a similar 

situation is encountered again, or just part of the original situation.  Once reactivated, the situated 

conceptualization reinstates itself in the brain and body, reproducing a state similar to the original 

experience, which may then be further adapted to the current situation via executive processing.  

Because the reactivated conceptualization is grounded in perceptual, cognitive, interoceptive, and 

motor systems, it does not simply describe the situation symbolically, but instead activates perceptions, 

cognitions, bodily states, actions, and emotions associated with the original situation.  To the extent 

that the reinstated memory is appropriate for the current situation, it provides useful pattern completion 

inferences about it.  When returning to the coffee house, for example, the situated conceptualization 

constructed previously in it might become active, simulating the positive emotion of eating the 

croissant, which then motivates consuming another. 

Over time, large populations of situated conceptualizations become increasingly established in 

memory for an individual.  Because different people store different populations of situated 

conceptualizations from different life experiences, individual differences result in applying these 

memories to current situations.  To the extent that individuals have different emotional experiences of 

the same coffee house, for example, they store different situated conceptualizations that later produce 
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different anticipatory emotions via pattern completion inference. 

Emotions as categories of exemplar memories.  From this perspective, the development of 

emotion categories results from constructing situated conceptualizations in emotional situations and 

organizing them into categories that become increasingly established in memory.  We assume that this 

account applies to emotion categories that are both ‘basic’ (e.g., fear, anger, sadness, disgust, happiness) 

and ‘non-basic’ (e.g., dread, guilt, hope love, peacefulness).  We further assume that a variety of socio-

cultural mechanisms, especially language, are responsible for organizing and differentiating emotional 

experiences over the course of development.  As a child feels anger across different situations, for 

example, hearing the word “anger” associated with these experiences causes the respective situated 

conceptualizations to become organized together (reflecting the culture’s conventions for what 

constitutes anger).  Additionally, as the child experiences new anger situations similar to earlier ones, 

situated conceptualizations for the new situations become integrated into the anger category, as its 

situated conceptualizations become active to guide current emotion via pattern completion inferences.  

As situated conceptualization accumulate for different emotions, guided by the socio-cultural and 

linguistic regularities that scaffold learning, the brain constructs differentiated emotion in relevant 

situations with increasing ease and efficiency. 

To the extent this account is correct, it follows that learning emotion categories should have 

much in common with learning non-emotion categories, especially when viewing learning from the 

perspective of exemplar theories (Wilson-Mendenhall et al., 2011).  If one views situated 

conceptualizations in an emotion category as the category’s exemplars, then learning an emotion 

category, such as fear, should proceed similarly to learning a natural category, such as apple.  Similar 

to how learning populations of exemplars underlies the acquisition of natural and artifact categories 

(e.g., Murphy, 2002; Nosofsky, 2011), learning populations of exemplars underlies the acquisition of 

emotion categories.  Analogous to how prototypical animals and artifacts emerge from acquired 

populations of animal and artifact exemplars (Hintzman, 1986; Medin & Schafer, 1978), prototypical 

emotions emerge from acquired populations of emotion exemplars (Wilson-Mendenhall, Barrett, & 

Barsalou, 2015).  In each case, prototypes are exemplars that are, on average, most frequent and most 
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similar relative to other category exemplars, and that are most ideal with respect to goals associated 

with using the category (Barsalou, 1985; Hampton, 1979; Rosch & Mervis, 1975).1 

Also similar to other categories, emotion categories are relatively unique.  Just as any other 

important kind of category assembles a unique collection of features and processes (e.g., tools, foods, 

animals, people), so do emotion categories.  For example, emotion categories typically assemble 

biologically-based processes for arousal, valence, reward, action, and cognitive control (e.g., Barrett & 

Bliss-Moreau, 2009).  Importantly, these biologically-based processes appear to underlie emotional 

states across all emotion categories (Barrett & Satpute, 2013; Lindquist et al., 2012; Wilson-

Mendenhall, Barrett, & Barsalou, 2013a).  As a consequence, emotions, as a whole, constitute a special 

category, assembling somewhat unique processes, many of which have strong biological origins. 

Within the broad category of emotions, emotion categories develop that reflect statistical 

regularities in the specific processes assembled to constructed situated conceptualizations.  Fear, anger, 

and disgust, for example, exhibit different statistical regularities in the perceptual, cognitive, 

interoceptive, and motor processes assembled for them. 

Emotion as categorization and inference.  Once the situated conceptualizations that constitute 

an emotion category become established in memory, emotion typically results from the process of 

categorization, namely, from conceptual acts (e.g., Barrett, 2006b, 2009, 2012, 2013, in press).  From this 

theoretical perspective, emotion categorization operates much like categorization in general (e.g., for 

artifact and animal categories).  On perceiving an affective stimulus or situation, the emotion category 

whose situated conceptualizations provide the best fit categorizes it.  On meeting with one’s boss, for 

example, situated conceptualizations stored from previous experiences become active and begin to elicit 

the emotion stored in the reactivated memories as pattern completion inferences.  Elements of the situated 

conceptualization not (yet) present in the situation are simulated or enacted, including perceptual 

anticipations, assessments of self-relevance, appropriate bodily states, and preparation for action (both 

cognitive and motoric).  Thus, the conceptual act, not only categorizes the situation as an instance of a 

particular emotion, it contributes to embodied experiences of the emotion. 

To the extent that individuals have different emotional experience in a given situation (e.g., 
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meetings with one’s boss), they categorize the situation differently, with different emotion resulting.  

Even when individuals activate the same emotion category in the situation (e.g., fear), the specific 

form produced may vary as a function of their previous situational experience (e.g., fear involving an 

unreasonable work request vs. job loss). 

Explaining distributional properties of emotion categories.  Reviews and meta-analyses of 

emotion document three distributional properties of emotion categories:  (1) statistical regularities, (2) 

non-homogeneity, and (3) non-selectivity (e.g., Barrett, 2006a,b; Kober et al., 2008; Lindquist et al. 

2012; Vytal & Hamann, 2010).  As described next, viewing emotions as learned categories of situated 

conceptualizations explains these distributional properties naturally. 

First, for a given emotion such as fear, statistical regularities typically occur for facial 

expression, action, subjective experience, peripheral physiology, and neural activity (e.g., Kober et al., 

2008; Lindquist et al. 2012; Vytal & Hamann, 2010).  Certain facial expressions, for example, are 

somewhat more likely for fear than for other emotions; similarly, certain brain activations are 

somewhat more likely for fear, as are certain forms of peripheral physiology.   From the constructivist 

perspective, these regularities result because assembling processes to produce emotional states is not 

random.  Because different emotions differ systematically in the processes they assemble, regularities 

result in the forms they take. 

Nevertheless, as reviews document, these regularities are relatively weak, reflecting the 

distributional properties of non-homogeneity and non-selectivity (e.g., Barrett, 2006a,b; Kober et al., 

2008; Lindquist et al. 2012).  Non-homogeneity results because the processes that compose different 

exemplars of the same emotion vary widely across exemplars.  A specific facial expression, for example, 

does not occur for all exemplars of fear, but only for some, with a wide variety of different facial 

expressions occurring across exemplars.  Similarly, a particular cardiovascular response does not occur 

for all fear experiences, nor does the activation of a particular brain area, nor the elicitation of a particular 

coping response.  Instead each emotional situation produces a specific emotional response adapted to 

current situational constraints.  As a result, no emotional process is common across all instances of the 

same emotion. 
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Non-selectivity results because the processes used to construct exemplars of one emotion are 

often used frequently to construct exemplars of other emotions as well.  The action of retreating, for 

example, may be useful for coping in some instances of fear, but may also be useful for coping with 

some instances of disgust, anger, and even happiness (e.g., when being happy about something might 

offend someone; Barrett et al., 2007).  Similarly, the utilization of a particular process may be relevant 

across many emotions, not just one (e.g., the amygdala signaling attentional relevance; the insula 

providing interoceptive feedback; Lindquist et al., 2012). 

Emotion coherence and communication.  People often have the sense that emotions constitute 

coherent categories, namely, each emotion shares a well-defined set of core features across its instances.  

Furthermore, because emotions appear to have conceptual cores, people can communicate clearly and 

effectively about the emotion that they or someone else is experiencing.  How are coherence and 

communication possible if emotions result from categories of exemplar memories that are non-

homogeneous and non-selective?  How could an emotion, such as fear, appear coherent?  How could 

two people talking about a fearful experience converge on a similar understanding? 

The problems of non-homogeneity and non-selectivity apply to categories in general, not just to 

emotion categories (e.g., Wittgenstein, 1953).  In general, most categories do not have core features 

common across category members that determine category membership (e.g., Hampton, 1979; Rosch 

& Mervis, 1975).  Instead of coherence within categories resulting from core features, coherence 

results from statistical regularities associated with family resemblance structures (Rosch & Mervis, 

1975) and radial category structures (Lakoff, 1987).  Furthermore, only a small subset of a category’s 

exemplars may be relevant for representing, understanding, and/or using a category on a given 

occasion, such that core features are neither necessary nor relevant (e.g., Medin & Ross, 1989; 

Spalding & Ross, 1994; cf. Barsalou, 2003a). 

Even when categories do not have core features, they nevertheless appear coherent to people.  

For various reasons, people may create the illusion that core features exist for a category (e.g., Brooks 

& Hannah, 2006), or they may create the fiction that a category has an essence (e.g., Gelman, 2003).  

In each case, cognitive structure added to exemplars creates an illusion of coherence.  Another 
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possibility is that using the same word (e.g., “fear”) when referring to the diverse non-homogeneous 

exemplars of a category creates the illusion that the underlying features of the category are as stable as 

its name (e.g., Barsalou, 1989; James, 1950/1890). 

Experiment Overview and Predictions 
As just described, we assume that an individual possesses a large population of situated 

conceptualizations (exemplars) in memory for a given emotion category, based on previous emotional 

experience.  Furthermore, when a new situation similar to one of these situated conceptualizations is 

encountered, the previous situated conceptualizations becomes active and produces a similar emotional 

state in the current moment.  It follows that if a person experiences an emotion multiple times in a new 

kind of situation, then new situated conceptualizations for the emotion become increasingly established.  

Furthermore, these situated conceptualizations are likely to become active later in related situations, 

producing similar emotional states.  Emotion learning should occur that affects how the person 

experiences emotion in this new kind of situation. 

To assess whether people learn situation-specific forms of an emotion in this manner, we 

manipulated the situational experience that two participant groups had with the same emotion, and then 

assessed whether these different learning experiences affected subsequent experiences of the emotion.  

We describe the learning and testing phases next, along with relevant predictions for each. 

Learning phase.  As Figure 1 illustrates, two learning groups consisting of different 

participants participated in the experiment.  Across sessions, one group of participants experienced fear 

and anger only in physical harm situations (e.g., being run over by a car while walking in a cross-

walk).  Conversely, a second participant group experienced fear and anger only in social threat 

situations (e.g., being ridiculed after saying something unpopular at a dinner party). 

To implement an effective situational manipulation, the physical and social situations were 

constructed to be distinctly different, having different statistical regularities.  In physical danger 

situations, the immersed participant was the only person present in an outdoor setting, and was 

responsible for creating a threat of bodily harm.  As a result, anger was directed toward the self, and 

fear involved imminent physical danger.  Conversely, in social evaluation situations, other people were 
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present in an indoor setting who were responsible for putting the immersed participant in a risky or 

difficult social situation.  As a result, anger was directed toward someone else, and fear involved 

negative evaluation by others.  Although the specific situations within each situation type varied 

considerably, they were nevertheless designed to share the situational regularities just described. 

Across two learning sessions illustrated in Figure 1, participants were asked to generate either 

fear or anger (not both) while immersed in a physical or social situation.  Once immersed in the 

situation, participants performed memory, imagery, being there, and typicality judgment at different 

points in the learning procedure (Figure 1).  As later results indicate, participants were generally 

successful at immersing themselves in the physical and social situations as instructed. 

As much research demonstrates, situation immersion is a powerful method for evoking emotion 

in laboratory environments (e.g., Corradi-Dell’Acqua, Hofstetter, & Vuilleumier, 2014; Lench, Flores, 

& Bench, 2011; Wilson-Mendenhall et al. 2011; 2013a,b).  The fact that people spend much time each 

day experiencing emotions in response to imagined events also attests to the power of this method 

(Killingsworth & Gilbert, 2010).  Furthermore, many studies demonstrate that the neural activity 

associated with imagining events overlaps significantly with the neural activity associated with actually 

experiencing them (Barsalou, 2008).  Finally, we found elsewhere that the physical and social 

situations used here induce immersion in the respective situations (Wilson-Mendenhall et al., 2013b).  

Whereas the physical situations induce action planning associated with handling a physical threat, the 

social situations induce social inference and mentalizing associated with being evaluated negatively. 

According to the constructivist perspective, participants should assemble a situated 

conceptualization on each trial to represent each learning situation and to feel emotion in it, perhaps 

utilizing related situated conceptualizations already in memory.  Thus, participants who experienced 

emotion in physical harm situations should have typically assembled processes relevant for perceiving 

a physical threat in an outdoor setting, anticipating bodily harm, and preparing motoric actions to 

remain safe.  Conversely, participants who experienced emotion in social evaluation situations should 

have typically assembled processes relevant for perceiving a social threat in an indoor setting, 

anticipating a decrease in social value, and preparing interpersonal actions to minimize social damage.  
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Across learning trials, each group should have increasingly established assemblies of processes 

relevant for processing the situational regularities encountered repeatedly.  As a result, each group 

should have implicitly learned to experience fear and anger differently within the experimental context. 

Along with fear and anger, two non-emotional mental states—plan and observe—were also 

included during the learning phase.  As for fear and anger, plan and observe were each experienced 

multiple times in either physical or social situations, but not both (mixed randomly with fear and anger 

within a learning group).  Besides functioning as fillers, plan and observe provided an opportunity to 

assess effects of situational learning on non-emotional mental states.  From hereon, “mental state” will 

refer to fear, anger, plan, and observe, so that all four can be referred to as a group. 

Test phase.  Following the second learning session, participants produced experiences of fear, 

anger, plan, and observe while undergoing functional magnetic resonance imaging (fMRI).  At the start 

of each test trial, participants were cued with the word for fear, anger, plan, or observe, and asked to 

produce the associated experience for 3 seconds.  As described for the learning phase, participants had 

extensive practice earlier producing experiences of fear, anger, plan, and observe upon hearing the 

respective words.  Cuing experiences with words in this manner has been used effectively in many 

related paradigms (e.g., Addis, Wong, & Schachter, 2007; Lench et al., 2011; Rubin, 1982). 

 After generating an experience of fear, anger, plan, or observe, participants then listened to one 

of the situations that they had experienced earlier during the learning phase.  As they listened to the 

situation, they were asked to embed their previously cued experience of fear, anger, plan, or observe 

into the developing situation.  Finally, participants judged how typical it was to experience the 

previously cued state in the situation.  The situation was always one that been experienced earlier 

during the learning phase.  Participants who received physical situations during learning only received 

the same physical situations again during testing; participants who received social situations during 

learning only received the same social situations again.  Thus, the testing context reinstated the learning 

context, such that participants were likely to experience emotional states during testing similar to those 

they had experienced during learning earlier. 

In the imaging analysis, the brain activations occurring during the 9 sec situation period were 
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separated from the activations initiated during the 3 sec before the situation (i.e., to the initial mental 

state word that cued participants to experience fear, anger, plan, or observe).  Of primary interest was 

whether the initial 3 sec activations for fear and anger, in particular, differed between learning groups 

as a function of the different situations experienced during the learning phase.  By focusing on 

activations during this initial phase, we were able to assess the neural activity associated with the same 

physical stimulus (e.g., the cue word “fear”) prior to a situation being presented.  In previous work, we 

found that presenting concepts initially, prior to subsequent task-relevant material, provided an 

effective means of establishing the neural systems used to process the initial concepts (Wilson-

Mendenhall, Simmons, Martin, & Barsalou, 2013). 

Our analyses focused on voxel activations significantly active above the resting state baseline for 

the following reasons.  First, we wanted to remove activations associated with the auditory processing of 

mental state cues during the first 3 sec.  By removing voxels significantly active above baseline across 

all four mental states in a given learning condition, we assumed that we would primarily be removing 

activations associated with perceptual stimulus processing peripheral to our hypotheses.  Because 

higher-level cognitive and affective processing is likely to vary considerably across the four mental 

states, we assumed that only neural activations associated with perceptual stimulus processing would be 

shared across them.  If so, then only auditory processing areas should become active, not other areas 

associated with cognitive and affective processing.2 

Assessing the remaining voxels significantly active above the resting state baseline allowed us to 

test hypotheses that follow from constructivist theories of emotion.  In general, if producing emotional 

and non-emotional mental states in different situations assembles different cognitive, interoceptive, and 

motor processes during the learning phase, then participants should activate different neural areas for the 

same mental state later during the test phase.  Three specific predictions follow. 

First, the number of voxels that become active above baseline to represent a situated emotional 

experience should depend on the specific collection of processes assembled.  Depending on the 

situation, different processes could become relevant for the same emotion, such that the total amount of 

neural activity above baseline varies.  Rather than a constant number of voxels becoming active across 



Learning Situated Emotions 13 

physical and social situations to represent a mental state, large situational differences in the voxels 

active above baseline could result.  Furthermore, these situational effects could vary considerably, with 

some mental states assembling more processes in social situations, and with other mental states 

assembling more processes in physical situations. 

Second, if the physical and social learning groups assembled different neural processes for the 

same mental state during the learning phase, they should activate different neural areas when later cued to 

produce mental states during the test phase.  If so, then the neural areas active above baseline for the same 

mental state across the physical and social learning groups should differ significantly (analogous to the 

non-overlapping activations observed for mental states when primed in physical vs. social situations; 

Wilson-Mendenhall et al., 2011).  To test this prediction, we used conjunction analysis to assess the 

overlap in voxels active above baseline for the same mental state across the two learning conditions. 

Third, if the same mental state assembles different processes in the physical and social 

conditions, different intrinsic networks should become active.  To assess this hypothesis, we assessed 

the number of voxels active above baseline in Yeo et al.’s (2011) intrinsic network masks.  If different 

sets of neural processes are assembled for the same mental state in different learning situations, then 

different distributions of activations across neural networks should be observed. 

Finally, two additional analyses assessed other issues of interest.  First, it follows from 

constructivist views that the neural activations for two emotions, such as fear and anger, could vary in 

similarity as a function of situation.  In some situations, fear and anger might assemble more similar 

sets of processes than in others.  If so, then the amount of overlap in activations for fear and anger 

above baseline should vary between the physical and social learning conditions.  Second, a final 

analysis assessed the possibility that instead of generating situated mental states to the cue words in the 

test phase, participants simply anticipated the situations to follow.  If so, then activations above 

baseline for all four mental states should be the same within each learning condition. 

Methods 
Participants 

Thirty right-handed, native-English speakers from the Emory University community, ranging in 
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age from 20 to 50 (average 28.17), participated in the experiment.  Fifteen participants were randomly 

assigned to each of the two situation groups (with 7 women in the physical situations group, and 8 

women in the social situations group).  Two additional participants were dropped due to excessive 

head motion in the scanner, and two more were dropped due to low temporal signal-to-noise ratios in 

their BOLD data.  During the first learning session, participants provided informed consent and were 

screened for any potential problems that could arise during an MRI scan.  Participants had no history 

of psychiatric illness and were not currently taking any psychotropic medication.  Participants received 

$100 in compensation, along with anatomical images of their brain. 

Materials 
Four mental-state words were used throughout both the learning and scanning phases:  fear, 

anger, plan, and observe.  Plan and observe provided filler trials that served to:  (1) create diversity 

during the learning and scanning sessions (i.e., not just two emotions); (2) help establish baselines used 

in scanning analyses; (3) provide an opportunity to assess situational learning effects on non-emotional 

mental states. 

The 50 situations used in this experiment were a subset of the 66 situations developed by 

Wilson-Mendenhall et al. (2011), and included 25 physical danger situations and 25 social evaluation 

situations.  The scanning session used 20 situations of each type; the practice session just before the 

scanning session used the 5 other situations of each type.  Each situation was designed so that each of 

the four mental state words would elicit a mental state that could be experienced in it plausibly.  A 

broad range of real-world situations served as the content of the experimental situations.  The physical 

situations involved vehicles, pedestrians, water, eating, wildlife, fire, power tools, and theft.  The social 

situations involved friends, family, neighbors, love, work, courses, public events, and service. 

A full and core form of each situation was constructed, with the latter being a subset of the 

former.  Each full and core situation described an emotional situation from the first-person perspective, 

so that the participant could immerse him- or herself in it.  The full form served to provide a rich, 

detailed, and affectively compelling description of a situation.  The core form was a distilled version of 

the full form that only included its essential aspects.  The purpose of the core form was to minimize 
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presentation time in the scanner, so that the number of necessary trials could be completed in the time 

available.  As described for the Learning Procedure in the Supplemental Materials, participants 

practiced reinstating the full form of a situation when receiving its core form during the learning phase, 

so that they would be prepared to also reinstate the full form during the scanning phase when receiving 

its core form.  Table 1 presents examples of the full and core situations. 

As Table 1 illustrates, situation templates were used to construct the full and core situations.  

Each template for the full situations specified a sequence of six sentences:  three primary sentences (Pi) 

also used in the related core situation, and three secondary sentences (Si) not used in the core situation 

that provided additional relevant detail.  The two sentences in each core situation were created by 

using P1 as the first sentence and a conjunction of P2A and P2C as the second sentence. 

For the physical situations, the template specified the following six sentences in order:  P1 

described a setting and activity performed by the immersed participant in the setting, along with 

relevant personal attributes; S1 provided visual detail about the setting; P2A described an action (A) of 

the immersed participant; P2C described the consequence (C) of that action; S2 described the 

participant’s action in response to the consequence; S3 described the participant’s resulting external 

somatosensory experience (on the body surface).  The templates for the social situations were similar, 

except that S1 provided auditory detail about the setting (instead of visual detail), S2 described another 

person’s action in response to the consequence (not action by the immersed participant), and S3 

described the participant’s resulting internal bodily experience (not on the body surface).  Different 

secondary sentences were used for the physical and social threat situations to assess issues addressed 

elsewhere on activations during the situations. 

High-quality audio recordings were created for the full and core versions of each situation, 

spoken by an adult American woman.  The prosody in the recordings expressed slight emotion, so that 

the situations did not seem strangely neutral.  The four mental state words were recorded similarly.  

Each core situation lasted about 8 sec or slightly less. 

Procedure 
Figure 1 provides an overview of the procedure described in detail below. 
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Learning procedure.  During the first learning session on Day 1, participants performed two 

tasks (memory judgments, imagery judgments) designed to produce implicit learning of each mental 

state (fear, anger, plan, observe) in either physical or social situations.  On each learning trial, 

participants heard a mental state word first, followed immediately by either the full or core version of a 

situation, and were asked to imagine experiencing the mental state in the situation over the course of 

listening to it.  Participants were further asked to experience the situation from the first-person 

perspective, to construct mental imagery of the situation as if it were actually happening, and to 

experience the situation in as much vivid detail as possible. 

In the memory task, participants received each mental state word with the full version of each 

physical or social situation, with the 25 trials for each of the 4 mental states randomly intermixed 

across the 100 trials.  On each trial, participants judged how familiar they were with experiencing the 

mental state in the situation, whether they had actually experienced it, and how recently (if ever) they 

had experienced it. 

In the subsequent 100 trials for the imagery task, participants received each mental state word 

with the core version of each physical or social situation, and were asked to practice reinstating the full 

version heard in the previous task.  On each trial, participants rated the vividness of the imagery that 

they experienced for the mental state in the situation on four modalities:  vision, audition, body, and 

thought (affect was not mentioned explicitly for thought). 

One to three days later (typically two), participants returned for a second learning session and 

the scanning session.  During the second learning session, participants again received each mental state 

word with the full version of each physical or social situation and judged how much they experienced 

“being there” in it.  The full versions were used again to refresh participants’ memories of the full 

situations, prior to the scanning session when they would receive the core versions.  The Supplemental 

Materials provide further details about the three learning tasks. 

Practice run.  Immediately following the final learning task, participants were introduced to 

the task that they would perform in the scanner, shown how to use the button box, and told that both 

complete and catch trials would be randomly intermixed (details provided in the next section).  
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Participants then practiced the task for the equivalent of one scanner run outside the scanner, using 5 of 

the 25 situations received during the learning task (not used in the critical scanning runs). 

Scanning procedure.  On each complete trial of the scanning task, participants heard a mental 

state word (fear, anger, plan, observe) for 3 sec, followed by a core version of a situation studied 

earlier during learning for 9 sec.  Participants then judged how typical it would be to experience the 

mental state in the situation, responding on a button box with 3 (very typical), 2 (somewhat typical), or 

1 (not typical).  Participants were reminded to immerse themselves in the mental state and situation 

while listening to them, and to experience them as vividly as possible.  To facilitate immersion, 

participants were asked to perform the task with their eyes closed.  Each mental state was followed 

once by each relevant situation, for a total of 80 complete trials (4 mental states each followed by the 

same 20 situations heard during learning but not during practice).  The physical learning group only 

received physical situations, and the social group only received social situations. 

Besides receiving complete trials that contained both a mental state and a situation, participants 

also received catch trials containing only a mental state, which enabled separation of BOLD 

activations for the mental states and situations on the complete trials (Ollinger, Corbetta, & Shulman 

2001; Ollinger, Shulman, & Corbetta, 2001).  Each of the 4 mental states occurred 12 times as a catch 

trial, for a total of 48 catch trials, constituting 37.5% of the total trials, a proportion in the 

recommended range for an effective catch trial design (Ollinger et al., 2001a,b). 

In each of 4 functional runs lasting 7 min 40 sec, participants received 20 complete trials and 

12 catch trials (5 complete trials and 3 catch trials for each of the 4 mental states).  All trial types were 

randomly intermixed in a fast event-related design, separated by random jitter that ranged from 3 to 15 

sec in increments of 3 sec (obtained from the optseq2 program).  On a given trial, participants could 

not predict whether they would receive a complete or catch trial, nor the mental state or situation 

presented.  Although 5 situations repeated within the practice run, none of the 20 remaining situations 

ever repeated within a critical scanner run.   Instead, the 4 presentations of the 20 critical situations 

were distributed randomly across the four runs, once following each of the 4 mental states. 

Participants received two anatomical scans, one before the first run, and one after the last run.  
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Participants took a short break between scans and runs.  Total time in the scanner was around 1 hr. 

Image acquisition.  Functional and structural MRI scans were collected in a 3T Siemens Trio 

scanner at Emory University, using a 12-channel head coil and a functional scan sequence designed to 

minimize susceptibility artifacts (56 contiguous 2 mm slices in the axial plane, interleaved slice 

acquisition, TR=3000ms, TE=30ms, flip angle=90°, bandwidth=2442Hz/Px, FOV=220mm, 

matrix=64, iPAT=2, voxel size=3.44×3.44×2mm).  This scanning sequence was selected after testing a 

variety of sequences for susceptibility artifacts in orbitofrontal cortex, the temporal poles, and medial 

temporal cortex.  We selected this sequence, not only because it minimized susceptibility artifacts by 

using thin slices and parallel imaging, but also because using 3.44 mm in the X-Y dimensions yielded 

a voxel volume large enough to produce good temporal signal-to-noise ratios. 

In each of the two anatomical runs, a T1 weighted volume was collected using a high resolution 

MPRAGE scan sequence that had the following parameters:  192 contiguous slices in the sagittal 

plane, single-shot acquisition, TR = 2300 ms, TE = 4 ms, flip angle = 8°, FOV = 256 mm, matrix = 

256, bandwidth = 130 Hz/Px, voxel size = 1 mm × 1 mm × 1 mm. 

Preprocessing and analysis.  Image processing using the AFNI platform included standard 

preprocessing steps, along with resampling to 2x2x2mm voxels and smoothing with a 6 mm kernel.  

Regression analysis was performed on individual participants, using a Gamma function that modeled 

the mental state and situation periods as blocks.  The 11 regressors included 4 for fear, anger, plan, and 

observe, 1 for the situation period, and 6 for motion parameters.  One random-effects ANOVA was 

performed on each learning group to establish significant activations for each of the 4 mental state 

periods, relative to fixation baseline (using an individual voxel significance threshold of p<.005 and a 

cluster threshold of 221 voxels, yielding a whole brain threshold of p<.05 corrected for multiple 

comparisons).3  Results are also shown at lower cluster thresholds of 110 and 60 voxels to assess the 

robustness of the results observed at the 221-voxel threshold.  Of interest was whether including 

smaller clusters at lower thresholds would alter the results for the critical analyses.  Finally, pairs of 

individual significance maps were entered into conjunction analyses to test hypotheses of interest, as 

described later.  The Supplemental Materials provide further details for all analyses. 
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Results 
Behavioral Data 

Learning phase.  Table 2 presents the behavioral data from the two learning sessions.  As the 

memory measures illustrate, participants were moderately familiar with the situations used throughout 

the experiment.  Participants showed a general tendency to have experienced the situations either 

themselves or with another (an average 59% of the time), and to have experienced the situations within 

the past 5 years.  As the imagery measures illustrate, participants generated moderate to strong imagery 

for the situations used in the experiment, and exhibited a moderate to strong ability to imagine being 

there when experiencing the situations.  Together, the imagery and being there judgments indicate that 

participants were able to immerse themselves effectively in the situations. 

Scanning phase.  Table 3 shows the average typicality data from the scanning session.  As these 

data illustrate, participants found the mental states to range from being somewhat typical in the situations 

to being very typical (an average typicality of 2.13, where 1 = not typical, 2 = somewhat typical, 3 = very 

typical).  For the emotions, participants found physical fear (2.66), social fear (2.37), and social anger 

(2.57) all to be relatively typical in the situations.  In contrast, participants found physical anger (2.01) to 

be somewhat less typical.  Physical anger may have exhibited somewhat less typicality for two reasons.  

First, fear may have been a stronger emotion in the physical situations than anger.  Participants might 

have primarily focused on how to avoid physical harm, and may not have had sufficient time for feeling 

angry toward themselves about getting into dangerous situations.  Anger may have appeared secondary to 

the primary goal of remaining safe.  Second, participants may have had some difficulty feeling anger 

towards themselves, not feeling comfortable about directing blame at themselves in these situations.  

Wilson-Mendenhall et al. (2011) observed a similar pattern of results in their data. 

Additionally, participants found it more typical to experience the two emotions in the situations 

(2.40) than the two non-affective mental states (1.86).  Participants also found the mental states, overall, 

to be more typical in the social situations (2.40) than in physical situations (2.05). 

Assessing Neural Activity for Situated Emotions and Their Overlap 
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The hypothesis of primary interest in this experiment was that the activations above the resting 

state baseline for a given emotion—fear or anger—would differ between the physical and social learning 

groups.  Because each group experienced different situational regularities for the same emotion during the 

learning phase, they would learn to assemble different processes when experiencing it for the same 

critical stimulus. 

Overview of the analysis procedure.  Figure S1 and the associated text in the Supplemental 

Materials describe the three steps of the analysis used to assess this hypothesis in detail.  The earlier 

section, Experiment Overview and Predictions, presented the rationale and logic of this analysis 

pipeline in detail.  We summarize these three steps briefly before proceeding here.  Again, the results 

presented only included activations during the initial 3 sec mental state phase of each trial, excluding 

activations from the subsequent 9 sec situation phase. 

Within these initial 3 sec activations, we first removed shared activations across the four mental 

states most likely associated with auditory processing of the cues, so that we could focus on semantic 

activations.  To establish shared perceptual activations, two conjunction analyses were performed 

across the four mental state conditions, one for physical situations, and one for social situations.  In 

each conjunction analysis, activations were only included in the final conjunction if significantly active 

in all four conditions at the corrected p < .05 significance level.  We will refer to these two sets of 

auditory-processing activations as the “physical baseline” and the “social baseline.” 

Second, we established activations important for each mental state in each situation, excluding 

activations associated with auditory stimulus processing.  Thus, the physical baseline was removed 

from the four activation maps for fear, anger, plan, and observe in the physical situations condition, and 

the social baseline was removed from the four activation maps for fear, anger, plan, and observe in the 

social situations condition.  By removing common activations across both emotional and non-

emotional mental states, subsequent analyses focused on activations only important for mental state 

processing, excluding shared activations associated with auditory processing.  After establishing each 

of these eight maps, we computed the overall number of voxels in it across the brain and in each of Yeo 

et al.’s (2011) intrinsic network masks, enabling tests of hypotheses presented earlier 
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Third, we established how much the resultant maps for each mental state overlapped across the 

physical and social learning situations.  Specifically, the two activation maps for each mental state in the 

physical and social learning conditions were submitted to a conjunction analysis that assessed the 

overlap in their activations.  In each analysis, three classes of voxels were identified:  (1) voxels active 

only in the physical learning group, (2) voxels active only in the social learning group, and (3) voxels 

active in both the physical and social learning groups.  By establishing these three voxel classes for each 

mental state, we were again able to assess how much the situation learning manipulation affected the 

generation of mental states in the test phase.  The following sections present these steps in greater detail, 

together with related analyses and findings. 

Common auditory processing in the physical and social baselines.  As just defined, the 

physical baseline included activations common across all four mental states in the physical learning 

condition, whereas the social baseline included activations common across all four mental states in the 

social learning condition.  As Supplemental Table S1 shows, each baseline contained two very large 

clusters, one in each hemisphere, containing voxels in superior temporal gyrus and posterior insula.  As 

much research documents, both the temporal and insular activations in these baselines are highly 

associated with auditory processing (e.g., Bamiou, Musiek, & Luxon, 2003; Nazimek et al., 2013).  

Figure 2 shows the auditory activations common to the physical and social baselines (in green).  

Supplemental Figure S2 shows the small unique activations in these clusters in the physical and social 

learning conditions, along with the much larger common activations shared between them. 

Because the activated areas in the auditory baselines were most likely associated with auditory 

processing of input stimuli, we removed them from the critical analyses to follow.  These regions were 

also removed because they were active for the non-affective mental states (plan and observe), not just 

for fear and anger.  By removing these activations, we focused the critical analyses of fear and anger on 

neural activity associated with emotion per se. 

Overall voxel counts.  From the constructivist perspective, a given emotion, such as fear, assembles 

different processes in different situations.  It follows that the total amount of processes assembled for an 

emotion could be relatively large in one situation but smaller in another.  To assess this hypothesis, we 
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established the overall amount of neural activity for each mental state in the physical and social learning 

groups above the resting state baseline, after removing shared activations for auditory processing as just 

described.  As Figure 3 illustrates, the results of this analysis support the hypothesis that a given emotion 

assembles different processes in different situations.  Three times as many voxels were active for fear after 

social learning than after physical learning, and seven times more voxels were active for anger. 

One possibility is that constructing an emotion in some situations requires more complex 

processing than constructing it in others.  For example, our social situations may have tended to be 

more complex than our physical situations, given that other people were always involved in the social 

situations but never in the physical ones.  Another possibility is that greater experience with social 

emotion situations establishes richer processes in memory, thereby producing more neural activity 

when social emotions are generated.  Consistent with this possibility, participants reported during the 

learning phase that they had more experience with fear and anger in social situations than in physical 

situations (as the higher ratings of familiarity, actual experience, and recency for social situations in 

Table 2 indicate). 

Two other findings related to the overall voxel counts are also of potential interest.  First, as 

Figure 3 illustrates, physical anger produced the lowest number of significantly active voxels (1,197) 

relative to the other seven conditions.  As discussed earlier for the behavioral data from the scanning 

session (Table 3), participants in physical situations may have experienced difficulty in generating 

anger towards themselves for various reasons.  Thus, the relatively low voxel counts for physical anger 

may have reflected difficulty assembling processes to produce this specific emotion. 

Second, the overall voxel counts for plan and observe demonstrated a very different 

distributional pattern across physical vs. social situations than did the voxel counts for fear and anger 

(χ2(3) = 100,347, p < .001).  As we just saw, more voxels were active in social situations than in 

physical situations for both fear (10,656 social voxels vs. 3,496 physical voxels) and anger (8,327 

social voxels vs. 1,197 physical voxels).  Interestingly, the opposite pattern occurred for plan (2,038 

social voxels vs. 2,914 physical voxels) and observe (1,340 social voxels vs. 3,121 physical voxels).  

This finding indicates that there was not something about the social learning condition that induced 
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greater overall processing of all four mental states.  Instead, fear and anger, induced more neural 

activity in the social condition, whereas plan and observe induced more in the physical condition. 

Situational overlap.  If a given emotion, such as fear, assembles different processes in different 

situations, then processes assembled for it should differ across situations.  To test this hypothesis, we used 

conjunction analyses to assess how much the neural activity for the physical and social learning groups 

overlapped for each mental state (after removing auditory processing areas).  Figure 2 summarizes the 

conjunction analyses for fear and anger, with Tables 4 and 5 quantifying the patterns of activity. 

As can be seen, the two learning groups activated very different neural assemblies for the same 

emotion.  For fear, only 11.5% of active brain voxels, on average, were shared across participants in the 

physical and social learning groups.  Similarly, for anger, only 16.5% of active voxels, on average, were 

shared across learning.  As each learning group generated an emotion to the same critical stimulus, they 

activated nearly non-overlapping brain areas.  This result remained virtually unchanged upon adopting 

more liberal cluster thresholds.  When the cluster threshold was set to 110 voxels, average overlap 

between the physical and social conditions was 13% for fear, and 15% for anger.  Similarly, for the 

cluster threshold of 60 voxels, fear exhibited an average 13% overlap, and anger 14%.  Thus, the pattern 

of overlap remained robust across a wide range of cluster thresholds. 

As Supplemental Tables S2 and S3 show, similar results occurred for plan and observe. At the 

221 voxel threshold, the average overlap between physical and social learning for plan was 12%; for 

observe, the average overlap was 16.5% (with similar patterns again occurring at lower cluster 

thresholds).  Table 6 provides summary voxel counts across all four conjunction analyses.  The section 

on Monte Carlo Simulations to Assess Random Overlap in the Supplemental Materials indicates that the 

overlap between the physical and social learning situations resulted from systematic differences between 

conditions, not from random activations within them. 

The specific brain areas active for fear (Table 4) and for anger (Table 5) offer post hoc 

interpretations into the situated emotions that the two learning groups constructed.  Across physical 

situations, fear activated brain areas associated with motoric action in environmental settings to handle 

physical threat (e.g., thalamus, caudate, cerebellum, frontal eye fields, parahippocampal gyrus), along 
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with areas that could potentially track the affective significance of threatening entities (lateral 

orbitofrontal cortex), and interoceptive responses to them (insula).  In contrast, for fear in social 

situations, much more brain activity was associated with visual processing of people and social cues in 

the environment (e.g., angular gyrus, fusiform face area, occipital lobe, precuneus, supramarginal 

gyrus), executive control (lateral prefrontal cortex), and interoceptive states (larger insula activations).  

In our previous work on priming different forms of fear in physical vs. social situations (Wilson-

Mendenhall et al., 2011; cf. Wilson-Mendenhall et al., 2013b), analogous differences in patterns of 

neural activity were observed, with physical fear oriented toward motoric action in the physical 

environment, and social fear oriented toward visuospatial processing of the social environment. 

Across physical situations, anger (similar to fear) activated brain areas associated with 

controlling action in the environment toward a physical threat (frontal eye-fields, precentral gyrus, 

caudate, dorsolateral prefrontal cortex, supramarginal gyrus), along with areas that could potentially 

track the salience of the threatening entities (insula).  Across social situations, anger (similar to fear), 

activated brain areas associated with processing people and social cues in the environment (e.g., 

medial prefrontal cortex, angular gyrus, fusiform gyrus, posterior cingulate, precuneus, occipital 

cortex).  Unlike social fear, social anger was associated with action, perhaps taking the form of 

imagined engagement with someone responsible for a social transgression (precentral gyrus, middle 

cingulate, supramarginal gyrus, cerebellum, thalamus). 

Network profiles.  To further assess the processes assembled for each situated emotion (e.g., 

physical fear), we established its profile of activation across the brain’s intrinsic networks.  From the 

constructivist perspective, the same emotion should be likely to activate different intrinsic networks in 

different situations, depending on the processes assembled.  A given emotion such as fear, for example, 

should exhibit different profiles of network activation in physical and social situations. 

To perform this analysis, we used the network masks developed by Yeo et al. (2011) for seven 

intrinsic brain networks observed during the resting state:  visual, somatomotor, frontoparietal control 

(FPC), dorsal attention (DAN), ventral attention (VAN), default mode network (DMN), and limbic 

(Limbic 1).  Because Yeo et al.’s limbic network (Limbic 1) omitted many classic limbic areas 
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(allocated instead to their other networks), we also present results for a second limbic mask (Limbic 2) 

developed by the Barrett lab that represents limbic areas more completely.  The Supplemental 

Materials provide a list of the brain areas that each of these limbic masks contains. 

For each situated emotion, we took the unique voxels significantly active for it in the conjunction 

analysis at the 221-voxel cluster threshold and established the number that fell within each network 

mask.  Because some voxels did not fall in any mask, the total number of voxels across masks does not 

sum to the total unique voxels significantly active.  Figure 4 displays the results of this analysis. 

As predicted, fear and anger each activated a different distributional profile of networks in physical 

vs. social situations, as did plan and observe (fear, χ2(7) = 2,154, p < .001; anger, χ2(7) = 1,081, p < .001; 

plan, χ2(7) = 1,216, p < .001; observe, χ2(7) = 2,040, p < .001).  These varying profiles suggest post hoc 

interpretations of the processes that the different situated emotions tended to assemble.  Although physical 

fear and social fear utilized the DMN and limbic networks comparably, social fear drew much more 

heavily on networks associated with mental simulation (visual, somatomotor) and with attention and 

control (FCN, DAN, VAN).  One possible interpretation is that social fear required more construction and 

control of mental simulations than did physical fear.  Analogously, social anger appeared to rely more on 

mental simulation than did physical anger, while also being associated with more mentalizing (DMN) and 

affect (Limbic 2).  Consistent with the earlier conclusion from the behavioral data that physical anger was 

difficult to construct, neural activity was low across all networks for this situated emotion.  Future work 

could aim to better understand these different distributional profiles. 

Further Evidence for Situated Emotion Learning 
Varying similarity of fear and anger across learning groups.  From the constructivist 

perspective, the neural activity of an emotion varies across situations.   As a consequence, the similarity 

between two emotions can also vary.  Because the perceptual, cognitive, interoceptive, and motor 

processes assembled for the same emotion vary across situations, the similarity of two different 

emotions to one another can vary as well.  If, for example, the processes assembled for fear and anger 

are more similar to each other across social situations than across physical situations, then the neural 

assemblies that implement fear and anger should overlap more in social situations. 
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To test this hypothesis, we computed the overlap of the neural activations for fear and anger, 

first, within the physical learning group and, second, within the social learning group (the Supplemental 

Materials describe the analysis procedure).  As Figure 5 illustrates, the overlap for fear and anger 

differed substantially as a function of situational learning (see Supplemental Tables S4, S5, and S6 for 

lists of activations and voxel counts).  In the physical learning group, the overlap across voxels for fear 

and anger at the 221-voxel cluster threshold was 16% on the average, whereas, in the social learning 

group, the overlap more than doubled to 37.5%.  Consistent with the constructivist perspective, the 

assemblies of perceptual, cognitive, interoceptive, and motor processes that implemented fear and anger 

varied across situations.  The same pattern held at the 110-voxel and 60-voxel thresholds (Table S6).  

The section on Monte Carlo Simulations to Assess Random Overlap in the Supplemental Materials 

indicates that the overlap between the physical and social learning situations resulted from systematic 

differences between conditions, not from random activations within them.  Consistent with the 

constructivist perspective, the similarity of two emotions varies as a function of the situation in which 

they are being constructed. 

Situation anticipation as an alternative explanation.  On receiving the word for a mental state 

during the initial 3 sec of a scanning trial, participants may simply have anticipated the general kind of 

situation likely to follow during the subsequent 9 sec situation phase.  Rather than generating a situation-

specific form of a mental state, participants may have simply anticipated the subsequent situation.  

Participants trained with physical situations may have anticipated the situational regularities associated 

with physical situations; participants trained with social situations may have anticipated the situational 

regularities associated with social situations.  Because the two groups anticipated different situational 

regularities, the low overlap and divergent voxel counts in Figures 2 and 3 occurred. 

As described in the Methods section, the same 20 situations followed each mental state during 

the scanning phase.  If participants had only anticipated situational regularities and not generated a 

mental state during the initial 3 sec of each trial, then they should have anticipated the same situational 

regularities for all four mental states.  In the physical learning condition, the same neural activity 

should have been observed for fear, anger, plan, and observe.  Analogously, in the social learning 
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condition, the four mental states should again have exhibited the same neural activity (although 

different from the constant neural activity in the physical learning condition).  In each learning 

condition, the initial processing of a mental state for 3 sec should have simply activated the situational 

regularities anticipated for the situation to follow. 

Several findings are inconsistent with this account.  First, the physical and social baselines 

described earlier for the conjunction analyses established activations constant across the four mental 

states in each learning group (Supplemental Table S1 and Figure S2).  As we saw, however, only brain 

areas in superior temporal cortex and insula associated with auditory processing were active across 

mental states.  If participants had been anticipating situational content, many more brain regions should 

have become active than simply ones associated with auditory processing. 

In an analysis of the brain areas active for the situations themselves during the 9 sec situation 

phase, many more brain regions were indeed active while participants processed the situations than while 

they processed mental state words during the previous 3 sec (see the Supplemental Materials for details of 

the analysis, and Supplemental Table S7 for the brain areas activated).  Not surprisingly, extensive 

activity occurred all over the brain that differed considerably between physical vs. social situations, with 

about twice as many voxels active for social situations as for physical situations.  If participants had 

simply anticipated situations during the 3 sec mental state period, then the social learning group should 

have activated more voxels during this period than did the physical learning group (given greater 

situational content to anticipate).  As seen earlier, however, the social and physical baselines contained 

nearly the same number of voxels (4,899 vs. 5,265, respectively; Supplemental Table S1).  And again, the 

two baselines should not have only shared similar activations in auditory processing areas, but should 

have also exhibited diverse activations across different situation processing areas, along the lines of the 

activations observed during the 9 sec situation periods (Supplemental Table 8). 

Finally, the overall voxel counts during the initial 3 sec cue period are also inconsistent with this 

explanation.  If participants had only anticipated situational regularities and not generated situation-

specific mental states, then a given learning group should have produced the same overall amount of 

brain activity across the four mental states.  As Figure 3 and Table 6 illustrate, however, the overall 
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voxel counts varied widely across mental states within the physical learning group (χ2(3) = 41,721, p < 

.001) and within the social learning group (χ2(3) = 58,626, p < .001).  For the physical learning group, 

the total number of voxels active for anger (1,197) was much less than those for fear (3,496), plan 

(2,914), and observe (3,121).  For the social learning group, many more voxels were active for anger 

(8,327) and fear (10,656) than for plan (2,038), and observe (1,340).  These large distributional 

differences further indicate that participants generated situation specific forms of mental states, rather 

than simply anticipating situations. 

Discussion 
From the perspective of constructivist theories, emotions are categories that grow incrementally 

with emotion experience, as exemplars for individual emotion categories accumulate in memory.  

When a given situation affords emotion, people assemble relevant processes related to perception, 

cognition, interoception, and action to interpret the situation and produce effective action in it.  Once 

an emotional state has been assembled in this manner, it becomes superimposed as a situated 

conceptualization in memory on other situated conceptualizations for the same emotion category.  

Over time, statistical regularities, non-homogeneity, and non-selectivity emerge naturally within and 

between emotion categories as consequences of this learning process.  Similar to how non-affective 

categories grow and evolve with situational experience, so do emotion categories. 

If emotions are learned in this manner, then the forms that they take on particular occasions 

should vary accordingly.  To assess this possibility, we performed an experiment that provided 

participants with the opportunity to learn new forms of fear and anger, and then assessed whether new 

forms developed.  During the learning phase, participants experienced fear and anger 83 times each 

while immersed in either physical harm or social evaluation situations.  If it is indeed possible to learn 

new forms of an emotion, then these systematic opportunities for learning should have changed the 

category knowledge of fear and anger in memory.  On later being asked during the test phase to 

produce fear and anger in the same situations, the physical and social learning groups should have 

produced new forms of fear and anger acquired during the learning phase. 

Multiple results indicated that participants learned situated forms of fear and anger.  While 
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producing fear and anger during the initial 3 sec of the test trials, the two learning groups activated 

nearly non-overlapping neural states (Figure 2).  For fear, the average overlap in neural activity 

between the physical and social learning groups was 11.5%; for anger, the average overlap was 16.5%.  

Although both groups received the same critical stimuli for producing the emotion (the words “fear” 

and “anger”), they produced highly divergent neural activity to them (with the catch trial design 

excluding subsequent activations to the situations that followed). 

Several other findings further indicate that the two learning groups acquired situated forms of 

fear and anger.  First, the overall amount of neural activity (as measured by total voxels counts) was 

much higher for the social learning group than for the physical learning group (Figure 3, Table 6).  

Producing fear and anger in social situations appeared to utilize more processes than producing them in 

physical situations.  Second, the distributional profiles of intrinsic brain networks active for a given 

emotion also differed significantly across physical and social situations (Figure 4).  In particular, fear 

and anger in social situations appeared to draw more heavily on networks associated with constructing 

and controlling mental simulations.  Finally, the similarity of fear and anger to each other differed across 

learning groups (Figure 5).  From the constructivist perspective, fear and anger shared more situational 

regularities in the social situations than in physical ones, and thus were more likely to assemble common 

processes.  Together, this pattern of results supports the hypothesis that participants acquired situated 

forms of fear and anger, reflecting their different learning experiences. 

Additional Findings Related to Situated Emotion Learning 
Situated learning vs. situated priming.  Whereas we assessed the situated learning of emotions 

here, Wilson-Mendenhall et al. (2011) assessed situated priming.  Unlike our experiment, theirs 

contained no initial learning phase in which different groups of participants learned to produce situated 

emotions.  Instead, their participants listened to either a physical harm or social evaluation situation 

(manipulated within participants), and then produced fear or anger to the same critical word cues (again, 

the words “fear” and “anger” mixed randomly with “plan” and “observe”).  Notably, these trials 

constituted the first time that these participants had experienced fear and anger in the situations.  

Nevertheless, the prediction was that participants would assemble different processes for the same 
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emotion after being primed with physical vs. social situations (with activations for the situations again 

removed using a catch trial design). 

Wilson-Mendenhall et al.’s situation priming manipulation did indeed produce different 

patterns of neural activity for the same emotion.  Based on ANOVA (instead of conjunction analysis), 

the overlap in neural activity for fear across physical and social situations was 54%, and for anger was 

70%.  Interestingly, these overlaps were much larger than those described in the experiment reported 

here, where the overlap across physical and social situations was only 11.5% for fear and 16.5% for 

anger.  Here, our participants experienced each emotion 83 times in either physical or social situations, 

before proceeding to the critical scan phase.  In contrast, Wilson-Mendenhall et al.’s participants did 

not practice producing emotion in the situations before scanning (although they were familiarized to 

the situations without the emotions). 

We suspect that extensive situational learning is responsible for the much lower overlap observed 

here.  Although situational priming in Wilson-Mendenhall et al. (2011) altered the form of an emotion 

significantly, situational learning altered it even more in the present study.  Perhaps as participants have 

more opportunities to produce situated forms of an emotion, they become increasingly better at producing 

them, such that the underlying neural assemblies diverge increasingly.  In the future, directly comparing 

situation priming and situation learning in the same experiment could be informative.  More generally, 

establishing the mechanisms that underlie the priming vs. learning of situation-specific emotions is an 

important topic for future research. 

Situated emotions vs. situated mental states (plan and observe).  Similar to fear and anger, 

plan and observe also showed low overlap in neural activity across physical and social situations (12% 

and 16.5%, respectively; Table 6).  This similarity between the two emotions and the two non-

emotions suggests that common mechanisms underlie both types of mental states.  As proposed earlier, 

emotions assemble unique sets of processes that are likely to have biological origins.  The same claim, 

however, could be made about other mental states such as plan and observe, namely, that they, too, 

draw on relatively unique collections of processes, some of which have biological origins.  In a very 

different type of analysis, Wilson-Mendenhall et al. (2011) similarly found that fear and anger 
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exhibited empirical properties much like those for plan and observe.  Together, these two sets of 

findings suggest that emotions are much like other mental states in being categories constructed 

dynamically to reflect situational constraints. 

In the experiment here, however, the emotion and non-emotion mental states exhibited an 

interesting difference as well (Figure 3).  Whereas fear and anger produced much more activation in 

social situations than in physical situations, plan and observe produced much less activation in social 

situations and somewhat more activation in physical situations.  Wilson-Mendenhall et al. (2011) 

similarly reported that situations and mental states interacted extensively, with each combination of a 

mental state in a situation drawing on processes only important for that combination. 

We suspect that such interactions are central to the construction of mental states in situations.  

In general, the processes assembled for a mental state in a particular situation are likely to reflect, first, 

the processes generally relevant for the mental state category across situations, and second, the 

contextual constraints present when the mental state is constructed in a specific situation.  To be 

maximally useful, knowledge about the mental state category must be adapted to current situational 

constraints.  Such interactions are likely to pose significant challenges, not only for basic theory, but 

also for applications such as neural decoding (e.g., establishing someone’s emotional state from 

measuring their neural activity).  Establishing the empirical regularities of these interactions and 

developing theoretical accounts of them constitute important directions for future research in the 

constructivist tradition. 

Future Directions 
Examining specific emotion situations.  Our findings suggest that learning plays an important 

role in emotion.  Participants learned to produce different forms of the same emotion after experiencing 

it either in physical harm or social evaluation situations.  Rather than broadly manipulating physical vs. 

social situations as we did here, future research could manipulate much more specific emotion 

situations, both in learning and later during emotion generation.  Once a specific emotional event has 

been experienced, does the unique set of processes established for it become active later when cued in 

the same specific situation?  Does emotion learning occur for situations that are much more specific 
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than the general classes of physical and social situations studied here? 

Establishing the cognitive functions of specific neural activations.  From examining the 

specific brain regions uniquely active for each learning group (Tables 4 and 5), we speculated on their 

cognitive functions, based on what has been established for these regions previously.  Future work, 

however, could aim to establish the specific cognitive functions of these brain areas in a more analytic 

and controlled manner.  Understanding the computational roles of the specific brain areas active during 

a specific state of situated emotion is another important goal for future research. 

Furthermore, it is not entirely clear to us what behavioral methods are best suited for providing 

conceptual interpretations of the neural patterns observed here for situated emotions.  What behavioral 

methods, for example, could establish lists of conceptual content that correspond one-to-one with the 

lists of neural activations for fear and anger in Tables 4 and 5?  Similarly, would it be possible to 

establish lists of peripheral physiological responses that correspond one-to-one with these neural 

activations?  Developing parallel methods at multiple levels of measurement and explanation is likely 

central to understanding and explaining situated emotion. 

Exploring individual differences.  Situation-specific learning of this kind is potentially 

relevant for understanding individual differences in emotion.  From the constructivist perspective, 

different people accumulate different populations of emotion exemplars for emotion categories.  As a 

consequence, when people categorize the same situation as an instance of an emotion category, 

different emotion exemplars become active to interpret the situation, thereby producing different 

emotional states.  Assessing the roles of learning in establishing the emotional styles of specific 

individuals constitutes another potential area for future research. 

In particular, psychopathology and psychotherapy offer interesting opportunities for exploring 

individual differences.  When, for example, an individual experiences a dysfunctional situation 

frequently, situated conceptualizations should become entrenched in memory to understand and cope 

with it, thereby becoming available for producing emotion in other situations, perhaps inappropriately.  

Indeed, dominant approaches to psychotherapy rest on the assumption that dysfunctional cognitive 

structures often underlie psychopathology, and that restructuring (or disabling) them is central to 
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successful treatment (Beck & Dozois, 2011; Bucci, 1997; Ellis & Grieger, 1986; Foa & Kozak, 1986; 

Masley, Gillander, & Simpson, 2012).  From our perspective, situated conceptualizations that produce 

emotion are likely candidates for the cognitive structures of central interest in psychotherapy. 

Analogously, when individuals practice producing specific forms of a desirable emotion, they 

establish situated conceptualizations that will generalize effectively to relevant situations later.  When 

practicing compassion meditation, for example, meditators induce experiences of compassion towards 

a wide variety of individuals and situations (Salzberg, 2002).  From the constructivist perspective, the 

situated conceptualizations that develop during these practices become entrenched in memory, later 

producing positive emotional experience and generous behavior in social interactions (cf. Hofmann, 

Grossman, & Hinton, 2011; Jazaieri et al., 2012; Klimecki et al, 2013; Lutz et al., 2008). 

Conclusion 
To the extent that learning underlies emotion, understanding the learning process and its 

consequences becomes essential for an adequate theoretical account.  Because emotion plays 

fundamental roles in human experience and behavior, understanding how it becomes adapted to 

specific situations has the potential for increasing our understanding of human nature, for directing 

future research on emotion across disciplines, and for developing interventions across a range of 

human activities. 
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Figure Captions 

Figure 1.  Overview of the two learning sessions and the scanning session. 

Figure 2.  Percentages of situationally unique and shared voxels for fear (A) and anger (B) across the 

physical and social learning groups from conjunction analyses (voxel frequencies are shown in italics).  

Unique activations in the physical learning group (red), unique activations in the social learning group 

(blue), shared activations across both groups (yellow), and activations for auditory processing (green) 

are shown for fear (C) and anger (D).  Voxel percentages and frequencies in Panels A and B do not 

include shared voxels for auditory processing.  Tables 2 and 3 provide full listings of activations, and 

Table 6 provides full listings of the voxel counts.  The two activation maps entered into each 

conjunction analysis were obtained in random effects analyses of the 3 sec mental state phase 

(excluding activations from the subsequent situation phase), using an independent voxel threshold of 

p<.005 and cluster extent threshold of 221 voxels (corrected significance, p<.05). 

Figure 3.  Total voxels significantly active for fear, anger, plan, and observe in physical vs. social 

situations, after removing voxels associated with auditory processing.  Tables 2 and 3 provide full 

listings of activations, and Table 6 provides full listings of the voxel counts.  The two activation maps 

entered into each conjunction analysis were obtained in random effects analyses of the 3 sec mental 

state phase (excluding activations from the subsequent situation phase), using an independent voxel 

threshold of p<.005 and cluster extent threshold of 221 voxels (corrected significance, p<.05). 

Figure 4.  Within the unique voxels for each situated mental state at the 221-voxel threshold (Table 6), 

the total voxels active in Yeo et al.’s (2011) visual network, somatomotor network, frontoparietal 

control (FPC), dorsal attention (DAN), ventral attention (VAN), default mode network (DMN), limbic 

network (Limbic 1), and in a more complete limbic network (Limbic 2). 

Figure 5.  Percentages of shared voxels for fear and anger in the physical learning group (A) and in the 

social learning group (B) from a conjunction analysis (voxel frequencies are shown in italics).   Unique 

fear activations (turquoise), unique anger activations (purple), shared activations across both emotions 
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(yellow), and activations for auditory processing (green) are shown for the physical learning group (C) 

and for the social learning group (D).  Voxel percentages and frequencies in Panels A and B do not 

include shared voxels for auditory processing.  Supplemental Tables S4, S5, and S6 provide full 

listings of activations and voxel counts.  The two activation maps entered into each conjunction 

analysis were obtained in random effects analyses of the 3 sec mental state phase (excluding 

activations from the subsequent situation phase), using an independent voxel threshold of p<.005 and 

cluster extent threshold of 221 voxels (corrected significance, p<.05). 
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Footnotes 
 

1  Rather than being stored as independent exemplar memories, the situated conceptualizations for a 

type of situation could be superimposed onto a common network, such that their aggregate effects 

on network weights represent the situation.  To the extent that the network includes hidden units 

for capturing correlations between situation elements, it becomes possible to statistically retain 

information about specific exemplars (e.g., McClelland & Rumelhart, 1985).  Although a network 

attractor functions as an implicit abstraction about the situation, information about specific 

instances of the situation resides in the network as well.  Because so much empirical evidence 

demonstrates that detailed exemplar information supports categorization (e.g., Allen & Broooks, 

1991; Nosofsky, 2011), accounts that incorporate this information are likely to be most useful in 

developing computational models of situated conceptualization.  Importantly, however, exemplar 

information need not arise from the storage of independent situated conceptualizations, but could 

reflect superimpositions of situated conceptualizations onto a network capable of capturing 

correlated features within specific situations (Barsalou, 1990). 
2  Because participants did not respond until a situation had been presented, no motor activations were 

expected across the eight situation X mental state conditions during the cue phase.  Thus, only 

shared perceptual activations were expected. 
3  The cluster threshold for significance at the p < .05 level was established with the revised ClustSim 

algorithm in AFNI that uses a mixed auto-correlation function.  As Cox, Chen, Glen, Reynolds and 

Taylor (2017) demonstrated, this method produces reliable threshold estimates in our type of event-

related design at our independent voxel threshold. 



	

Table	1.		Examples	of	physical	danger	and	social	evaluation	situations	in	the	template	format	used	to	construct	them.	
	 	

Examples	of	Physical	Danger	Situations	
Full	Version	

(P1)	You	step	off	the	curb	to	cross	a	busy	street	without	looking.		(S1)	Suddenly	you	see	traffic	coming	toward	you	from	the	corner	of	your	eye.		
(P2A)	You	leap	to	avoid	an	approaching	car.		(P2C)	It	hits	you	and	sweeps	your	legs	off	the	ground.		(S2)		You	tumble	onto	the	hood.		(S3).	You	
feel	the	car	skidding	to	a	stop.	

Core	Version	
(P1)	You	step	off	the	curb	to	cross	a	busy	street	without	looking.	
(P2)	You	leap	to	avoid	an	approaching	car,	but	it	hits	you	and	sweeps	your	legs	off	the	ground.	

Full	Version	
(P1)	You’re	standing	by	a	very	shallow	swimming	pool.		(S1)		Because	you	can	see	that	bottom	is	so	close	to	the	surface	of	the	water,	you	realize	
that	diving	in	could	be	dangerous.		(P2A)		You	dive	in	anyway.		(P2C)	Your	head	bangs	hard	on	concrete	bottom.		(S2)	You	put	out	your	hands	to	
push	away.		(S3)	You	feel	yourself	swallowing	water.	

Core	Version	
(P1)	You’re	standing	by	a	very	shallow	swimming	pool.	
(P2)	You	dive	in	anyway,	and	your	head	bangs	hard	on	the	concrete	bottom.	
	

Examples	of	Social	Evaluation	Situations	
Full	Version	

(P1)	You’re	at	a	dinner	party	with	friends.		(S1)	A	debate	about	a	contentious	issue	arises	that	gets	everyone	at	the	table	talking.		(P2A)	You	
alone	bravely	defend	the	unpopular	view.		(P2C)	Your	comments	are	met	with	sudden	uncomfortable	silence.		(S2)	Your	friends	are	looking	
down	at	their	plates,	avoiding	eye	contact	with	you.		(S3)	You	feel	your	chest	tighten.	

Core	Version	
(P1)	You’re	at	a	dinner	party	with	friends.	
(P2)	You	alone	bravely	defend	the	unpopular	view,	and	your	comments	are	met	with	sudden	uncomfortable	silence.	

Full	Version	
(P1)	You’re	checking	e-mail	during	your	morning	routine.		(S1)	You	hear	a	familiar	ping,	indicating	that	a	new	e-mail	has	arrived.		(P2A)	A	
friend	has	posted	a	blatantly	false	message	about	you	on	Facebook.		(P2C)	It’s	about	your	love	life.		(S2)	The	lower	right	corner	of	the	website	
shows	1,000	hits	already.		(S3)	You	feel	yourself	finally	exhale	after	holding	in	a	breath.	

Core	Version	
(P1)	You’re	checking	e-mail	during	your	morning	routine.	
(P2)	A	friend	has	posted	a	blatantly	false	message	on	Facebook	about	your	love	life.	

	 	

Note.		The	label	preceding	each	sentence	(e.g.,	P1)	designates	its	role	in	the	template,	as	described	in	the	materials	section.	
	
	
	 	



	

Table	2.			Means	(standard	errors)	for	the	behavioral	data	collected	during	training.	
	
______________________________________________________________________________________________________________________________________________________________________________	

	 Physical	Training	 Social	Training	
	 	 	 	 	

Measure	(Scale)	 Fear	 Anger	 Plan	 Observe		 Fear	 Anger	 Plan	 Observe	
______________________________________________________________________________________________________________________________________________________________________________	
	
Memory	Measures	

Familiarity	(1-7)		 3.57	 (.11)		 3.37	 (.10)		 3.24	 (.10)		 3.27	 (.10)		 4.18	 (.10)		 4.29	 (.10)		 4.21	 (.09)		 4.18	 (.10)	

Experience	(0-1)		 .47	 (.03)		 .44	 (.03)		 .47	 (.03)		 .46	 (.03)		 .71	 (.02)		 .74	 (.02)		 .73	 (.02)		 .71	 (.02)	

Last	time	(1-5)		 1.94	 (.06)		 1.87	 (.06)		 1.94	 (.06)		 1.93	 (.06)		 2.72	 (.07)		 2.77	 (.07)		 2.75	 (.07)		 2.76	 (.07)	

	
Imagery	Measures	

Vision	(1-7)		 5.05	 (.06)		 4.92	 (.07)		 4.92	 (.07)		 4.93	 (.06)		 5.55	 (.07)		 5.64	 (.06)		 5.46	 (.07)		 5.49	 (.07)	

Audition	(1-7)		 3.27	 (.09)		 3.17	 (.08)		 3.11	 (.08)		 3.24	 (.09)		 4.84	 (.08)		 4.78	 (.08)		 4.67	 (.08)		 4.66	 (.08)	

Body	(1-7)		 4.75	 (.07)		 4.69	 (.07)		 4.67	 (.08)		 4.73	 (.08)		 5.28	 (.07)		 5.29	 (.07)		 4.84	 (.07)		 4.97	 (.07)	

Thought	(1-7)		 4.93	 (.08)		 4.79	 (.08)		 4.75	 (.08)		 4.70	(1.08)		 5.23	 (.07)		 5.36	 (.07)		 5.19	 (.07)		 5.10	 (.07)	

	

Being	There	(1-7)		 5.13	 (.06)		 4.78	 (.07)		 4.69	 (.07)		 4.71	 (.07)		 5.27	 (.07)		 5.41	 (.06)		 5.08	 (.07)		 5.11	 (.06)	
	

______________________________________________________________________________________________________________________________________________________________________________	
Note.		All	measures	assessed	the	experience	of	experiencing	a	mental	state	(fear,	anger,	plan,	observe)	in	a	situation	(Physical,	Social).		For	the	
familiarity	measure	(actual	and	vicarious	experience):		1	=	no	familiarity,	4	=	average	familiarity,	7=	high	familiarity.		For	the	experience	measure	
(actually	experienced	by	oneself	or	with	another),	1	=	experienced,	0	=	not	experienced.		For	the	last-time-experienced	measure:		5	=	past	month,	4	=	
within	the	past	year,	3	=	within	the	past	five	years,	2	=	any	other	earlier	time,	1	=	never.		For	the	four	measures	of	imagery	vividness	(visual,	auditory,	
bodily,	thought):		1	=	no	imagery,	4	=	moderate	imagery,	7	=	highly	vivid	imagery.		For	the	being	there	measure	(immersion	in	the	mental	state	and	
situation):		1	=	not	experiencing	being	there	at	all,	4	=	experiencing	being	there	a	moderate	amount,	7	=	experiencing	very	much	as	if	actually	being	
there.		See	the	Supplemental	Materials	for	additional	task	details.	
	
	 	



	

Table	3.			Means	(standard	errors)	for	the	behavioral	data	collected	during	the	scanner	task.	
	
______________________________________________________________________________________________________________________________________________________________________________	

	 Physical	Training	 Social	Training	
	 	 	 	 	

Measure	(Scale)	 Fear	 Anger	 Plan	 Observe	 Fear	 Anger	 Plan	 Observe	
______________________________________________________________________________________________________________________________________________________________________________	
	

Typicality	(1-3)		 2.66	 (.04)		 2.01	 (.05)		 1.82	 (.05)		 1.73	 (.04)		 2.37	 (.05)		 2.57	 (.04)		 1.90	 (.05)		 2.00	(.05)	
	
______________________________________________________________________________________________________________________________________________________________________________	
	
Note.			For	the	measure	of	how	typical	it	would	be	to	experience	the	mental	state	in	the	situation,	1	=	not	typical,	2	=	somewhat	typical,	3	=	very	typical.		
See	the	Supplemental	Materials	for	additional	task	details.	
	
	



	

Table	4.			Unique	and	shared	activations	for	fear	from	a	conjunction	analysis	across	activations	in	the	physical	and	social	training	groups.	
	 	

	 	 	 Cluster	 Max	 	 Voxel	 	 	
Brain	Region	 	 Brodmann	Area	 Volume	 Intensity	t	 x	 y	 z	
	 	
	
Unique	Activations	in	the	Physical	Training	Group	
	
B	caudate	head	 	 770	 9.72	 -1	 21	 10	
B	hypothalamus/pons/	 	 552	 8.63	 -1	 -31	 -6	
				thalamus/parahippocampus/	
				cerebellum/culmen	
R	mid-temporal	 21	 460	 7.71	 49	 -35	 -6	
L	mid-temporal	 22	 247	 6.93	 -45	 -31	 4	
R	mid-frontal	(eye	fields)	 6	 211	 6.23	 31	 3	 42	
R	posterior	insula/	 7	 203	 8.51	 45	 1	 -8	
					R	STG	 21	 	
L	posterior	occipital	 17/18	 193	 5.00	 -19	 -97	 -2	
R	lOFC	 47	 142	 5.77	 53	 19	 -10	
L	mid-cingulate	gyrus	 24	 111	 6.34	 -17	 -11	 34	
L	med	frontal	gyrus	 6	 105	 5.76	 -9	 7	 54	
L	precuneus	 7	 90	 6.00	 -3	 -77	 42	
L	mid-frontal	(eye	fields)	 6	 72	 5.22	 -39	 -1	 48	
L	cerebellum/culmen	 	 65	 5.21	 -9	 -45	 -6	
L	parahippocampal	gyrus/	 	 61	 6.56	 -29	 -55	 2	
			culmen		
L	OFC/STG	 47/38	 55	 5.18	 -45	 13	 -6	
L	insula	 13	 51	 4.59	 -41	 -7	 0	
L	postcentral	gyrus	 43	 38	 4.80	 -51	 -17	 16	
R	insula	 13	 24	 5.68	 37	 -23	 16	
L	inferior	parietal	 40	 20	 5.16	 -41	 -37	 22	 	
	
Unique	Activations	in	the	Social	Training	Group	
	
R	supramarginal	gyrus	 40	 6,143	 7.36	 13	 -73	 34	 	
				B	precuneus	 7	
				angular	gyrus	 39	
				occipital	lobe	 18/19	



	

				fusiform	gyrus	 37	
				cerebellum	(declive,	culmen)	
R	posterior	insula	 13	 1,538	 8.39	 45	 -17	 -10	
				STG	 21/22	
L	posterior	insula	 13	 1,051	 8.16	 -63	 -41	 18	
				STG	 21/22	
				parahippocampus	
R	IFC	 6/9	 911	 5.95	 39	 5	 30	
L	precentral	gyrus	 6	 331	 5.41	 -43	 -9	 42	
R	thalamus	(red	nucleus,	 	 131	 5.37	 9	 -23	 -4	
				medial	geniculum)	
L	dlPFC	 10	 94	 8.53	 -35	 55	 24	
L	mid-cingulate	gyrus	 24	 92	 6.62	 -23	 -7	 28	
R	dlPFC	 10	 89	 5.64	 35	 43	 14	
B	precuneus	 7	 81	 5.37	 -3	 -49	 52	
R	mid-cingulate	gyrus	 24	 77	 5.25	 13	 7	 38	
B	PCC	 23	 72	 5.09	 -5	 -31	 28	
	
Shared	Activations	Between	the	Physical	and	Social	Training	Groups	
	
R	mid-temporal	 22	 125	 6.24	(7.38)	 43	(43)	 -23	(-23)		 -4	(-4)	
R	mid-frontal	(eye	fields)	 6	 77	 7.52	(4.90)	 31	(43)	 1	(1)	 	42	(48)	
L	mid-temporal	 22	 70	 6.77	(5.67)	 -47	(-47)	 -31	(-25)	 4	(2)	
L	cingulate	gyrus	 24	 68	 6.83	(8.13)	 -23	(-23)	 -15	(-5)	 32	(28)	
R	insula	 13	 50	 6.02	(7.18)	 47	(35)	 -23	(-23)	 16	(16)	
L	precentral	gyrus	 43	 47	 6.72	(4.66)	 -59	(-59)	 -7(-23)	 12	(18)	
R	thalamus	 	 40	 5.06	(5.43)	 13	(11)	 -25	(-25)	 -4	(-2)	
L	ACC	 32	 38	 7.66	(5.14)	 -19	(-19)	 31	(31)	 4	(6)	
R	dlPFC	 9	 38	 4.31	(5.38)	 47	(41)	 17	(15)	 30	(26)	
R	supramarginal	gyrus	 40	 31	 4.57	(5.40)	 55	(53)	 -47	(-39)	 18	(16)	
L	insula	 13	 21	 4.36	(6.69)	 -47	(-51)	 -33	(-39)	 20	(18)	
	 	

Note.		Activations	were	obtained	using	an	independent	voxel	threshold	of	p	<	.005	and	a	cluster	threshold	of	60	voxels,	in	each	of	the	two	situation	
training	groups.		Clusters	having	221	voxels	or	larger	are	significant	at	p	<	.05.		Smaller	clusters	are	shown	to	provide	a	sense	of	weaker	activations.		
Clusters	smaller	than	60	voxels	resulted	from	the	conjunction	analysis	producing	cluster	fragments,	when	different	parts	of	a	cluster	were	shared	vs.	
unique.		Cluster	fragments	smaller	than	20	voxels	are	not	shown.			
*	indicates	a	shared	activation	significant	at	the	p<.05	extent	threshold	(221	voxels).		R	is	right,	L	is	left,	B	is	bilateral,	dlPFC	is	dorsolateral	prefrontal	
cortex,	STG	is	superior	temporal		gyrus,	lOFC	is	lateral	orbitofrontal	cortex,	and	ACC	is	anterior	cingulate	cortex.	



	

	Table	5.			Unique	and	shared	activations	for	anger	from	a	conjunction	analysis	across	activations	in	the	physical	and	social	training	groups.	
	 	

	 	 	 Cluster	 Max	 	 Voxel	 	 	
Brain	Region	 	 Brodmann	Area	 Volume	 Intensity	t	 x	 y	 z	
	 	
	
Unique	Activations	in	the	Physical	Training	Group	
	
L	superior	temporal	pole	 38	 205	 6.87	 -55	 7	 0	
R	posterior	insula	 13	 160	 5.63	 33	 -23	 6	
R	superior	temporal	 22	 146	 5.34	 67	 -39	 12	
L	posterior	insula/caudate	 13	 133	 6.44	 -29	 -23	 26	
R	mid-frontal	(eye	fields)	 6	 129	 7.45	 37	 5	 46	
L	supramarginal	gyrus	 40	 120	 5.19	 -43	 -37	 22	
R	superior	temporal	 22	 116	 6.03	 65	 1	 -2	
L	mid-frontal	(eye	fields)	 6	 84	 4.94	 -43	 1	 54	
R	dlPFC	 	 80	 5.08	 39	 21	 30	
R	precentral	gyrus	 6	 53	 5.14	 27	 1	 26	
R	insula	 13	 47	 5.63	 25	 -29	 22	
R	mid-temporal	gyrus	 21	 24	 5.69	 53	 -21	 -6	
R	temporal	pole	 38	 21	 5.38	 53	 15	 -12	
	
Unique	Activations	in	the	Social	Training	Group	
	
L	mid-cingulate	 23	 3,690	 7.25	 -11	 -13	 32	
				supramarginal	gyrus	 40	
				precuneus	 7	
				angular	gyrus	 39	
				posterior	occipital	 17/18/19	
				temporal	 21/22	
				temporal	 38	
				posterior	insula	 13	
				fusiform	gyrus	 37	
				cerebellum/declive	
R	posterior	occipital	 17/18/19	 1,786	 7.72	 37	 -53	 2	
				fusiform	gyrus	 37	
R	temporal	gyrus	 22/38	 994	 10.94	 49	 -5	 -6	
R	precentral	gyrus	 6	 647	 5.89	 41	 1	 38	



	

R	mid-posterior	cingulate	 24/31	 408	 7.78	 23	 -19	 34	
L	premotor	gyrus	 6	 375	 8.30	 -35	 3	 28	
L	medial	frontal	gyrus	 6	 111	 6.63	 -15	 -3	 48	
B	precuneus	 7	 87	 4.97	 -3	 -49	 50	
L	PCC	 29	 68	 6.27	 -13	 -41	 10	
L	substantia	nigra/	 	 61	 6.30	 -13	 -25	 -2	
				thalamus	(medial	geniculum)	
	
	
Shared	Activations	Between	the	Physical	and	Social	Training	Groups	
L	mid-temporal	 21	 67	 4.82	(5.14)	 -49	(-53)	 -45	(-41)		 8	(18)	
L	mid-cingulate	 24/31	 61	 5.38	(5.61)	 -25	(-19)	 -29	(-9)	 24	(32)	
L	STG	 22	 35	 6.20	(5.34)	 -49	(-55)	 -3	(-1)	 -6	(-6)	
R	temporal	pole	 38	 33	 9.16	(5.47)	 51	(49)	 15	(11)	 -10	(-12)	
R	insula	 13	 33	 6.74	(4.92)	 43	(43)	 -15	(-13)	 -6	(-6)	
R	dlPFC	 9	 27	 4.29	(4.79)	 43	(37)	 17	(19)	 28	(26)	
	 	

Note.		Activations	were	obtained	using	an	independent	voxel	threshold	of	p	<	.005	and	a	cluster	threshold	of	60	voxels,	in	each	of	the	two	situation	
training	groups.		Clusters	having	221	voxels	or	larger	are	significant	at	p	<	.05.		Smaller	clusters	are	shown	to	provide	a	sense	of	weaker	activations.		
Clusters	smaller	than	60	voxels	resulted	from	the	conjunction	analysis	producing	cluster	fragments,	when	different	parts	of	a	cluster	were	shared	vs.	
unique.		Cluster	fragments	smaller	than	20	voxels	are	not	shown.			
*	indicates	a	shared	activation	significant	at	the	p<.05	extent	threshold	(221	voxels).		R	is	right,	L	is	left,	B	is	bilateral,	dlPFC	is	dorsolateral	prefrontal	
cortex,	PCC	is	posterior	cingulate	cortex,	and	STG	is	superior	temporal	gyrus.	
	 	



	

Table	6.			Proportions	of	shared	(non-baseline)	voxels	for	fear,	anger,	plan,	and	observe	in	the	physical	and	social	learning	groups,	together	with	the	
relevant	voxel	frequencies.	
	 	

	 	 Physical	Learning	 Social	Learning	
	 	 	 	 	

	 Proportion	 Shared	Non-	 Unique	 Total	 Proportion		 Shared	Non-	 Unique	 Total		
Mental	State	 Shared	Voxels	 Baseline	Voxels	 Voxels	 Voxels	 Shared	Voxels	 Baseline	Voxels	 Voxels	 	Voxels	
	 	
	
Cluster	Threshold	=	221	Voxels	
	 Fear	 .17	 610	 2,886	 3,496	 .06	 610	 10,046	 10,656	
	 Anger	 .29	 350	 847	 1,197	 .04	 350	 7,977	 8,327	
	 Plan	 .10	 292	 2,622	 2,914	 .14	 292	 1,746	 2,038	
	 Observe	 .10	 306	 2,815	 3,121	 .23	 306	 1,034	 1,340	
	 Average	 .17	 390	 2,293	 2,682	 .12	 390	 5,201	 5,590	
	
Cluster	Threshold	=	110	Voxels	
	 Fear	 .19	 734	 3,157	 3,891	 .07	 734	 10,254	 10,988	
	 Anger	 .25	 370	 1,122	 1,492	 .04	 370	 8,068	 8,438	
	 Plan	 .10	 318	 2,922	 3,240	 .11	 318	 2,527	 2,845	
	 Observe	 .10	 345	 3,104	 3,449	 .19	 345	 1,489	 1,834	
	 Average	 .16	 442	 2,576	 3,018	 .10	 442	 5,585	 6,026	
	
Cluster	Threshold	=	60	Voxels	
	 Fear	 .19	 818	 3,573	 4,391	 .07	 818	 10,650	 11,468	
	 Anger	 .23	 419	 1,388	 1,807	 .05	 419	 8,235	 8,654	
	 Plan	 .09	 331	 3,170	 3,501	 .10	 331	 2,969	 3,300	
	 Observe	 .10	 373	 3,332	 3,705	 .19	 373	 1,623	 1,996	
	 Average	 .15	 485	 2,866	 3,351	 .10	 485	 5,869	 6,355	
	 	

Note.		All	voxels	from	the	physical	and	social	baselines	for	the	mental	states	have	been	removed	from	this	analysis	(5,265	voxels	from	the	physical	
baseline,	4,899	voxels	from	the	social	baseline).		Only	non-baseline	voxels	are	included.		Voxel	totals	in	Tables	4,	5,	S2,	and	S3	do	not	add	up	to	the	totals	
here,	because	fragments	smaller	than	20	voxels	from	the	conjunction	analysis	were	not	included	in	the	earlier	tables,	but	are	included	here	(see	the	
Supplementary	Materials	for	details).	
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Supplemental	Materials	
	

Learning	Situated	Emotions	
Lebois,	Wilson-Mendenhall,	Simmons,	Barrett,	&	Barsalou	

	
	
Learning	Procedure	and	Practice	

When	learning	began	on	the	first	day,	participants	were	first	told	
about	the	full	and	core	versions	of	the	situations,	and	why	each	version	
was	necessary.		On	hearing	each	full	situation,	participants	were	asked	
to	immerse	themselves	in	it	from	the	first-person	perspective,	to	
construct	mental	imagery	of	the	situation	as	if	it	were	actually	
happening,	and	to	experience	it	in	as	much	vivid	detail	as	possible.		On	
hearing	each	core	version	later,	participants	were	asked	to	reinstate	
being	in	the	original	situation	imagined	earlier	for	the	full	version,	with	
all	of	its	vivid	sensory	detail.		Participants	in	the	physical	harm	
condition	only	received	the	physical	harm	situations;	participants	in	
the	social	evaluation	condition	only	received	the	social	evaluation	
situations.		E-Prime	software	controlled	all	phases	of	the	experiment,	
during	both	the	learning	sessions	and	the	scan	session.		Participants	
listened	to	stimuli	for	the	mental	state	words	and	situations	over	
headphones,	and	made	their	responses	on	either	keyboards	or	button	
boxes,	as	specified	later.	

During	instructions	to	participants,	across	the	learning	tasks	and	
test	session,	fear,	anger,	plan,	and	observe	were	referred	to	as	“mental	
states.”		On	each	trial,	participants	heard	a	mental	state	word	first,	
followed	immediately	by	a	situation,	and	were	asked	to	imagine	
experiencing	the	mental	state	in	the	situation	over	the	course	of	
listening	to	it.		Participants	were	further	asked	to	experience	the	
situation	from	the	first-person	perspective,	to	construct	mental	
imagery	of	the	situation	as	if	it	were	actually	happening,	and	to	
experience	the	situation	in	as	much	vivid	detail	as	possible.		The	goal	of	
learning	was	to	practice	experiencing	each	mental	state	extensively	in	
all	25	situations	for	one	situation	type	or	the	other	(physical	or	social).		
In	each	of	the	three	learning	tasks,	participants	received	each	of	the	4	
mental	states	once	in	each	of	the	25	situations,	for	a	total	of	100	
learning	trials.	

During	the	first	learning	task	on	the	first	day	of	learning,	
participants	made	three	memory	ratings	on	the	computer	keyboard	as	
they	experienced	each	mental	state	in	the	full	version	of	a	situation.	
First,	participants	rated,	“How	familiar	are	you	with	this	type	of	
situation,	where	your	familiarity	could	come,	not	only	from	
experiencing	the	situation,	but	from	reading	about	it,	seeing	it	on	TV,	
hearing	someone	else	talk	about	it,	and	so	forth.”		Participants	
responded	using	a	1	to	7	scale	for	familiarity,	where	1	indicated	no	
familiarity,	4	indicated	average	familiarity,	and	7	indicated	high	
familiarity.		Second,	participants	rated,	“Have	you	ever	experienced	this	
type	of	situation	yourself	or	been	present	when	someone	else	
experienced	it?”		Participants	responded	yes	(1)	or	no	(0).		Third,	
participants	were	asked,	“When	was	the	last	time	that	you	experienced	
this	type	of	situation	either	yourself	or	with	someone	else?”	
Participants	responded	within	the	past	month	(5),	within	the	past	year	
(4),	within	the	past	five	years	(3),	any	other	earlier	time	(2),	or	never	
(1).		After	participants	completed	the	three	ratings	for	one	full	
situation,	they	proceeded	to	the	next	situation,	until	all	20	situations	in	
their	situation	condition	had	been	judged.	

In	the	second	learning	task	on	the	first	day,	participants	received	
each	mental	state	word	with	the	core	version	of	each	physical	or	social	
situation,	and	were	asked	to	reinstate	the	full	version	heard	in	the	
previous	task.		Again,	participants	were	asked	to	experience	each	
mental	state	while	being	in	each	situation	with	as	much	vivid	sensory	
detail	as	possible.		In	this	second	task,	participants	rated	the	vividness	
of	the	imagery	that	they	experienced	for	the	mental	state	in	the	
situation.		Specifically,	participants	rated	their	experienced	imagery	on	
four	modalities	(always	in	the	same	fixed	order):		vision,	audition,	
bodily,	and	thought	(affect	was	not	mentioned	explicitly	for	thought).		
For	each	modality,	participants	entered	a	rating	on	the	keyboard	using	
a	1	to	7	scale,	where	1	meant	no	imagery	at	all,	4	meant	moderate	
imagery,	and	7	meant	highly	vivid	imagery.	
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As	the	first	day	of	learning	drew	to	a	close,	participants	were	told	
what	would	happen	on	the	second	day	of	the	experiment.		Specifically,	
they	were	told	about	the	final	learning	task	and	practice,	what	to	expect	
while	being	in	the	scanner,	and	the	importance	of	not	moving.	

On	the	second	day	of	the	experiment	(one	to	three	days	after	the	
first	day,	typically	two),	participants	performed	a	third	learning	task,	
again	with	the	full	versions	of	their	respective	situations	(physical	or	
social).		Participants	received	the	full	versions	of	the	25	situations	
again,	so	that	they	could	refresh	their	memories	of	all	the	details,	before	
receiving	the	core	versions	soon	thereafter	in	the	scanner.		Again,	core	
versions	were	used	in	the	scanner,	to	maximize	the	use	of	scanning	
time,	with	the	full	versions	being	used	initially	to	make	the	situational	
experiences	as	rich	as	possible.		In	this	third	learning	task,	participants	
received	each	mental	state	word	and	rated	how	much	they	experienced	
being	immersed	in	the	imagined	situation	with	the	mental	state.		
Specifically	participants	rated,	“How	much	did	you	experience	‘being	
there’	in	the	situation?”		Participants	responded	on	the	computer	
keyboard,	using	a	1	to	7	scale,	where	1	meant	not	experiencing	being	in	
the	situation	at	all,	4	meant	experiencing	being	in	the	situation	a	
moderate	amount,	and	7	meant	experiencing	the	situation	very	much,	
as	if	actually	being	there.	

	
Preprocessing	and	Analysis	

All	preprocessing	and	statistical	analyses	were	conducted	in	AFNI	
(Cox,	1996).		The	first	anatomical	scan	was	registered	to	the	second,	
and	the	two	datasets	averaged	to	produce	a	single	high-quality	
anatomical	volume.		The	averaged	anatomical	volume	was	then	
skull-stripped,	aligned	to	the	same	functional	volume	used	later	for	
registering	the	functional	volumes,	and	transformed	to	Talairach	space	
with	an	automated	procedure	that	used	the	TT_N27.		The	functional	
volume	used	as	the	registration	base	for	both	the	anatomical	and	
functional	data	was	near	the	end	of	the	final	functional	run,	thereby	
minimizing	the	warping	required	for	aligning	the	anatomical	and	
functional	volumes.		The	anatomical	scan	was	registered	to	the	
functional	data	so	as	to	minimize	the	number	of	transformations	
performed	on	the	functional	data.	

For	the	functional	volumes,	slice-time	correction	was	performed	
first,	followed	by	volume	registration	and	transformation	to	Talairach	
space	in	a	single	step,	thereby	reducing	error	that	occurs	when	

functional	data	are	warped	independently	multiple	times.		Specifically,	
the	transformation	matrix	used	in	this	single	step	combined	
transformations	matrices	from	the	following	three	processes:		(1)	
warping	the	anatomical	volume	to	the	registration	base,	(2)	warping	
the	anatomical	volume	into	Talairach	space,	(3)	temporarily	warping	
the	functional	volumes	to	the	same	registration	base	during	motion	
correction.		During	this	combined	processing	step,	the	voxel	
dimensions	for	the	functional	volumes	were	resampled	from	3.44	×	
3.44	×	2	mm	to	2	x	2	x	2	mm.		Voxels	outside	the	brain	were	removed	
from	further	analysis,	as	were	high-variability	low-intensity	voxels	
likely	to	be	shifting	in	and	out	of	the	brain	due	to	minor	head	motion.		
The	remaining	functional	data	were	smoothed	using	an	isotropic	6	mm	
full-width-half-maximum	Gaussian	kernel.		Finally,	the	signal	intensities	
in	each	volume	were	divided	by	the	mean	signal	value	for	the	
respective	run	and	multiplied	by	100	to	produce	percent	signal	change	
from	the	run	mean.		All	later	analyses	were	performed	on	the	percent	
signal	change	data.	

Regression	analysis	was	performed	on	the	data	of	individual	
participants	using	a	canonical	single-parameter	Gamma	function	to	
model	the	hemodynamic	response.		To	establish	the	activations	for	
each	of	the	four	mental	states	relative	to	the	fixation	baseline,	each	
mental	state	was	modeled	as	a	3	sec	block.		Because	participants	
anticipated	the	mental	states	for	3	sec	prior	to	a	possible	situation	that	
could	follow,	modeling	each	mental	state	as	a	3	sec	block	was	more	
justified	than	modeling	it	as	a	brief	event	that	only	occurred	briefly	at	
the	start	of	the	3	sec	period.		The	situations	for	each	participant	were	
also	analyzed	as	blocks,	but	for	9	sec.		Thus,	for	each	participant,	betas	
were	calculated	for	five	conditions,	all	modeled	as	blocks:		the	four	
mental	states,	and	the	one	type	of	situation	received.	

Six	regressors	obtained	from	volume	registration	during	
preprocessing	were	included	to	remove	any	residual	signal	changes	
correlated	with	movement	(translation	in	the	X,	Y,	and	Z	planes;	
rotation	around	the	X,	Y,	and	Z	axes).		Scanner	drift	was	removed	by	
finding	the	best-fitting	polynomial	function	correlated	with	time	in	the	
preprocessed	time	course	data.	

As	described	in	the	main	text,	the	catch	trial	design	allowed	us	to	
separate	activations	for	the	mental	states	from	activations	for	the	
subsequent	situations	that	followed	immediately	(with	no	random	
jitter	in	between).		Each	of	the	four	mental	state	conditions	was	
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modeled	by	creating	one	regressor	that	included	mental	state	blocks	
from	both	complete	trials	and	catch	trials.		Using	a	single	regressor	to	
model	blocks	from	both	trial	types	for	a	given	mental	state	made	it	
possible	to	mathematically	separate	activations	for	the	mental	state	
blocks	from	activations	for	the	subsequent	situation	blocks.		Thus,	
activations	from	the	subsequent	situation	blocks	were	not	included	in	
the	activations	for	each	mental	state	condition.		For	each	mental	state,	a	
total	of	32	blocks	was	used	to	estimate	its	regressor	(i.e.,	from	20	
complete	trials	and	12	catch	trials).	

Two	ANOVAS	(analyses	of	variance)	were	performed	on	the	betas	
of	individual	participants,	one	for	each	learning	group	(i.e.,	participants	
trained	with	physical	harm	situations	vs.	participants	trained	with	
social	evaluation	situations).		In	each	random	effects	analysis,	the	only	
factor	included	was	mental	state,	with	four	levels	(fear,	anger,	plan,	and	
observe).		A	voxel-wise	significance	level	of	p	<	.005,	with	a	spatial	
extent	threshold	of	221	functional	voxels,	was	used	to	threshold	the	
resulting	t	maps,	yielding	a	whole-brain	threshold	of	p	<	.05,	corrected	
for	multiple	comparisons.		The	spatial	extent	threshold	was	established	
using	ClustSim	in	AFNI,	which	runs	Monte	Carlo	simulations	to	estimate	
extent	thresholds	needed	to	exceed	cluster	sizes	of	false	positives	at	a	
given	voxel-wise	threshold.	

In	additional	analyses,	lower	spatial	extent	thresholds	of	110	and	
60	functional	voxels	were	implemented	to	assess	the	robustness	of	the	
results	observed	at	the	221	voxel	threshold.		Of	interest	was	whether	
including	smaller	clusters	at	lower	thresholds	would	significantly	alter	
the	conjunction	analyses	that	assessed	overlap	for	an	emotion	across	
situations.	

	

Conjunction	Analyses	
Situation	overlap	analysis.		As	just	described	in	the	section	on	

Preprocessing	and	Analysis,	each	conjunction	analysis	was	performed	
once	at	an	extent	threshold	of	221	voxels	(p	<	.05),	and	again	at	lower	
extent	thresholds	of	110	and	60	voxels	(to	see	if	the	conjunction	results	
were	robust	when	smaller	clusters	were	included).		To	provide	a	
thorough	inventory	of	potentially	relevant	clusters,	Tables	4	and	5	in	
the	main	text,	and	Tables	S2	and	S3	here,	list	the	clusters	from	the	
analyses	that	used	the	60-voxel	threshold.		Cluster	listings	from	the	221	
and	110-voxel	analyses	are	largely	the	same,	except	for	the	absence	of	
clusters	below	221	and	110	voxels,	respectively.		Figure	2	in	the	main	
text	displays	the	results	for	the	221-voxel	threshold.	

Note	that	when	a	conjunction	analysis	divided	a	significant	cluster	
into	one	part	that	occurred	in	one	situation	and	into	another	part	that	
occurred	in	both	situations,	clusters	could	become	smaller	than	the	
original	extent	threshold	of	60	voxels.		Thus,	Tables	4,	5,	S2,	and	S3	
include	cluster	fragments	down	to	20	voxels.		Although	cluster	fragments	
smaller	than	20	voxels	are	not	included	in	these	tables,	all	fragments,	no	
matter	how	small,	were	included	in	the	voxel	counts	and	overlap	
reported	in	Tables	6	and	S4	(also	in	Figure	2).		Thus,	the	voxel	counts	in	
Tables	4,	5,	S2,	and	S3	do	not	add	up	to	those	in	Tables	6	and	S4.	

Table	6	summarizes	the	voxel	counts	and	overlaps	across	clusters	
for	fear,	anger,	plan,	and	observe	from	Tables	4,	5,	S2,	and	S3,	once	for	
each	cluster	threshold.		As	can	be	seen,	lowering	the	spatial	extent	
threshold	from	221	voxels	to	110	to	60	voxels	had	little	effect	on	the	
overlaps	observed	for	all	four	mental	states	
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Figure S1.  The process for computing the situation-specific, shared, and unique activations for a mental state (fear, 
anger, plan, or observe) across the physical and social training groups.  In Step 1, shared activations across all four 
mental states in each training group are computed in a four-way conjunction analysis, establishing the physical vs. social 
baselines, respectively.  In Step 2, the baseline activations for each training group are removed for each mental state in 
the same training group.  In Step 3, the conjunction for each mental state across the physical and social training groups 
is computed, minus the respective baselines (shown only for fear), to establish shared and unique activations across 
training groups. 
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Table	S1.			Shared	activations	during	the	mental	state	phase	in	the	physical	and	social	baselines,	from	one	conjunction	analysis	across	the	fear,	anger,	
plan,	and	observe	for	each	situation	learning	group	(physical	vs.	social).	
______________________________________________________________________________________________________________________________________________________________________________	

	 Fear	 Anger	 Plan	 Observe		
	 ______________________	 ________________________	 ________________________	 ___________________________	

	 	 	 Cluster	 Max	 Voxel	 	 Max	 	Voxel	 	 Max	 	Voxel	 	 Max	 	 Voxel	
Brain	Region	 	 Brodmann	Area	 Volume	 Intensity	t	 x	 y	 z	 Intensity	t	 x	 y	 z	 Intensity	t	 x	 y	 z	 Intensity	t	 x	 y	 z	
______________________________________________________________________________________________________________________________________________________________________________	
	
Physical	Situations	Baseline	
	
R	STG	 	 21/22/41/42	 2,952	 12.52	 61-11	 6	 14.32	 63	 -5	 0	 12.56	 61	 -9	 6	 14.86	 51	 1	 -4	
R	posterior	insula	 13	
L	STG	 	 21/22/41/42	 2,313	 10.15	 -49-15	 6	 14.27	 -51	 1	 0	 10.75	 -31	 -29	10	 12.14	 -49	 -17	 8	
L	posterior	insula	 13	
	
Social	Situations	Baseline	
	
R	STG	 	 21/22/41/42	 2,614	 18.98	 61-25	 4	 15.65	 61-25	 4	 21.47	 63	 -11	 -2	 19.46	 49	 -31		12	
R	posterior	insula	 13	
L	STG	 	 21/22/41/42	 2,285	 16.59	 -45-15	 8	 17.68	 47-13	 8	 12.95	 -47	 -13	 6	 14.22	 -57	 -29		10	
L	posterior	insula	 13	
______________________________________________________________________________________________________________________________________________________________________________	

Note.		Activations	were	obtained	using	an	independent	voxel	threshold	of	p	<	.005	and	a	cluster	threshold	of	221	voxels	in	each	situation	learning	group	
(clusters	larger	221	voxels	or	larger	are	significant	at	p	<	.05).		R	is	right,	L	is	left,	and	STG	is	superior	temporal	gyrus.	



Figure S2.  Activations from the mental states phase of the scanning trials for the physical and social baselines 
(i.e., neural areas active across all four mental states in a learning condition, most likely associated with auditory 
processing of the test cues).  Unique physical activations (red), unique social activations (blue), and shared 
activations (purple) are shown.  Full listings of activations can be found in Table S1.  The supplementary text 
and Figure S1 provide detailed descriptions of how the baselines were computed and used. 
 

physical social overlap 
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Table	S2.			Unique	and	shared	activations	for	plan	from	a	conjunction	analysis	across	activations	in	the	physical	and	social	learning	groups.	
	 	

	 	 	 Cluster	 Max	 	 Voxel	 	 	
Brain	Region	 	 Brodmann	Area	 Volume	 Intensity	t	 x	 y	 z	
	 	
	
Unique	Activations	in	the	Physical	Learning	Group	
	
R	mid-temporal	 21	 605	 8.60	 47	 3	 -12	
L	mid-temporal	 22	 511	 6.70	 -29	 -27	 8	
R	temporal	 22	 429	 6.95	 57	 -37	 18	
R	supramarginal	 40	
R	caudate	 	 423	 6.22	 21	 15	 32	
R	ACC	 32	
L	mid-temporal	 21/22	 375	 6.88	 -51	 -1	 -8	
L	temporal	pole	 38	
R	frontal	pole	 10	 224	 8.12	 27	 55	 22	
L	occipital	lobe	 17/18	 159	 5.54	 -19	 -87	 -4	
B	thalamus	 	 139	 4.91	 3	 -1	 10	
				(L	anterior,	R	MD	nucleus)	
R	prefrontal	cortex	 9/10	 70	 4.64	 19	 33	 30	
L	caudate	body	 	 66	 5.07	 -17	 25	 8	
L	cerebellum	 	 63	 5.87	 -15	 -57	 -24	
L	mid-temporal	 21	 62	 5.37	 -63	 -29	 2	
L	supramarginal	gyrus	 40	 20	 4.36	 -39	 -39	 30	
	
Unique	Activations	in	the	Social	Learning	Group	
	
R	occipital	 18	 386	 5.65	 25	 -91	 20	
L	fusiform	gyrus	(FFA)	 19/37	 359	 7.52	 -37	 -73	 -12	
L	precuneus	 	 337	 6.60	 -25	 -61	 42	
L	occipital	 18/19	 195	 5.24	 -13	 -83	 30	
R	temporal	 41/42	 194	 5.86	 45	 -37	 14	
R	frontal	 6	 169	 6.70	 31	 -7	 60	
L	posterior	insula	 	 157	 5.72	 -37	 -11	 -6	
B	post-central	 4	 153	 5.32	 -3	 -33	 60	
R	fusiform	(FFA)	 19/37	 140	 7.49	 41	 -67	 -12	
R	mid-cingulate	 24/31	 130	 4.59	 27	 -7	 34	
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L	superior	temporal	 22	 103	 8.21	 -33	 -39	 20	
R	fusiform	 37	 90	 5.11	 37	 -51	 -2	
L	ACC	 	 89	 5.78	 -15	 13	 28	
R	occipital	 18	 79	 4.25	 23	 -71	 -10	
L	caudate	 	 75	 7.17	 -21	 -25	 24	
R	cerebellum	 	 72	 5.29	 1	 -37	 -4	
R	precuneus	 7	 63	 5.36	 33	 -65	 30	
R	ACC	 32	 49	 4.75	 21	 37	 14	
L	STG	 22	 34	 4.28	 -63	 -1	 0	
L	cingulate	gyrus	 23	 22	 4.44	 -21	 -11	 28	
L	insula	 13	 21	 4.81	 -41	 -13	 10	
	
Shared	Activations	Between	the	Physical	and	Social	Learning	Groups	
L	caudate	 	 110	 6.56	(6.66)	 -17	(-17)	 -9	(-13)	 30	(30)	
L	STG	 22	 34	 7.21	(4.82)	 -49	(-43)	 -5	(-3)	 -6	(-6)	
R	insula	 13	 28	 4.86	(6.74)	 31	(33)	 -29	(-23)	 18	(16)	
L	transverse	temporal	gyrus	 42	 22	 5.63	(8.80)	 -29	(-35)	 -31	(-37)	 10	(20)	
L	insula	 13	 21	 5.09	(4.62)	 -39	(-37)	 -17	(-17)	 -2	(-2)	
R	STG	 22	 20	 5.67	(4.53)	 53	(51)	 1	(7)	 4	(0)	
L	mid-occipital	 18	 20	 4.88	(4.27)	 -25	(-25)	 -93	(-89)	 6	(2)	
	 	

Note.		Activations	were	obtained	using	an	independent	voxel	threshold	of	p	<	.005	and	a	cluster	threshold	of	60	voxels,	in	each	of	the	two	situation	
learning.		Clusters	having	221	voxels	or	larger	are	significant	at	p	<	.05.		Smaller	clusters	are	shown	to	provide	a	sense	of	weaker	activations.		Clusters	
smaller	than	60	voxels	resulted	from	the	conjunction	analysis	producing	cluster	fragments,	when	different	parts	of	a	cluster	were	shared	vs.	unique.		
Cluster	fragments	smaller	than	20	voxels	are	not	shown.		R	is	right,	L	is	left,	B	is	bilateral,	dlPFC	is	dorsolateral	prefrontal	cortex,	PCC	is	posterior	
cingulate	cortex,	STG	is	superior	temporal		gyrus,	lOFC	is	lateral	orbitofrontal	cortex,	ACC	is	anterior	cingulate	cortex,	STG	is	superior	temporal	gyrus.	
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	Table	S3.			Unique	and	shared	activations	for	observe	from	a	conjunction	analysis	across	activations	in	the	physical	and	social	learning	groups.	
	 	

	 	 	 Cluster	 Max	 	 Voxel	 	 	
Brain	Region	 	 Brodmann	Area	 Volume	 Intensity	t	 x	 y	 z	
	 	
	
Unique	Activations	in	the	Physical	Learning	Group	
	
R	lOFC	 47	 1,323	 9.55	 49	 11	 -12	
				posterior	insula	 13	
				temporal	pole	 38	
				superior	temporal	 22	
				inferior	frontal	gyrus	 6	
L	posterior	insula	 13	 1,112	 8.33	 -49	 -13	 -4	
				temporal	pole	 38	
L	superior	temporal	 22	
R	fusiform	gyrus	 20/37	 226	 6.62	 43	 -43	 -24	
L	caudate	 	 217	 6.82	 -15	 25	 10	
R	frontal	cortex	 6	 111	 4.88	 43	 5	 42	
L	cerebellum	 	 104	 5.65	 -35	 -65	 -18	
R	frontal	pole	 10	 86	 6.08	 21	 63	 18	
B	cerebellum	 	 66	 4.93	 1	 -35	 -8	
L	STG	 42	 41	 5.85	 -67	 -19	 10	
L	STG	 22	 30	 6.59	 -51	 -35	 6	
	
Unique	Activations	in	the	Social	Learning	Group	
	
L	mid-temporal	 22	 467	 7.14	 -65	 -45	 16	
R	mid-temporal	 22	 454	 6.81	 43	 -13	 -8	
L	mid-occipital	 18/19	 137	 5.31	 -43	 -81	 12	
R	thalamus	(medial	geniculum)	 	 117	 5.74	 7	 -35	 4	
R	precuneus	 7	 113	 4.72	 27	 -61	 36	
R	frontal	 6/9	 90	 4.66	 35	 7	 30	
R	temporal	pole	 38	 87	 6.57	 53	 9	 -10	
L	STG	 22	 40	 5.01	 -53	 9	 -2	
L	insula	 13	 40	 5.38	 -27	 -29	 20	
R	mid-temporal	 21	 37	 5.87	 67	 -13	 -8	
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Shared	Activations	Between	the	Physical	and	Social	Learning	Groups	
	
L	mid-temporal	 22	 78	 5.56	(6.12)	 -51	(-37)	 -33	(-31)	 4	(6)	
R	mid-temporal	 22	 63	 5.55	(5.26)	 51	(43)	 -33	(-25)	 -2	(-4)	
L	insula	 13	 36	 5.24	(5.29)	 -27	(-29)	 -31	(-29)24	(22)	
L	STG	 22	 28	 6.07	(4.76)	 -51	(-53)	 5	(7)	 0	(0)	
R	temporal	pole	 38	 21	 10.42	(6.41)	 53	(53)	 17	(17)-12	(-10)	
	 	

Note.		Activations	were	obtained	using	an	independent	voxel	threshold	of	p	<	.005	and	a	cluster	threshold	of	60	voxels,	in	each	of	the	two	situation	
learning	groups.		Clusters	having	221	voxels	or	larger	are	significant	at	p	<	.05.		Smaller	clusters	are	shown	to	provide	a	sense	of	weaker	activations.		
Clusters	smaller	than	60	voxels	resulted	from	the	conjunction	analysis	producing	cluster	fragments,	when	different	parts	of	a	cluster	were	shared	vs.	
unique.		Cluster	fragments	smaller	than	20	voxels	are	not	shown.		R	is	right,	L	is	left,	B	is	bilateral,	lOFC	is	lateral	orbitofrontal	cortex,	and	STG	is	
superior	temporal	gyrus.	
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Brain	Areas	Included	in	the	Limbic	1	and	Limbic	2	Masks	
The	Yeo	et	al.	(2011)	mask	for	the	limbic	network	(what	we	call	

“Limbic	1”)	contains	the	following	anatomical	regions:		temporal	pole,	
superior	temporal	gyrus,	parahippocampal	gyrus,	inferior	temporal	
gyrus	including	fusiform	gyrus,	inferior	frontal	gyrus,	middle	frontal	
gyrus,	lateral	and	medial	orbitofrontal	cortex,	ventromedial	prefrontal	
cortex,	and	ventral	anterior	cingulate	cortex.	

The	more	complete	limbic	mask	that	LFB’s	lab	developed	(“Limbic	
2”)	shares	the	following	anatomical	regions	with	Yeo	et	al’.s	Limbic	1	
mask:		temporal	pole,	superior	temporal	gyrus,	parahippocampal	gyrus,	
fusiform	gyrus,	middle	frontal	gyrus,	lateral	and	medial	orbitofrontal	
cortex,	ventromedial	prefrontal	cortex,	and	ventral	anterior	cingulate	
cortex.		The	additional	anatomical	regions	in	Limbic	2	include:		insula,	
uncus,	hippocampus,	amygdala,	caudate,	putamen,	dorsal	anterior	
cingulate	cortex,	middle	cingulate	cortex,	and	posterior	cingulate	
cortex.	

	
Monte	Carlo	Simulations	to	Assess	Random	Overlap	

Conjunction	analyses	for	the	same	mental	state	across	
situations.		Additional	analyses	assessed	the	possibility	that	the	
overlapping	activations	across	physical	and	social	situations	for	a	given	
mental	state	occurred	by	chance.		Consider	the	voxel	overlap	for	fear	in	
Figure	2	and	Table	6.		Of	the	132,105	possible	voxels	assessed	in	the	
conjunction	analyses,	10,656	were	significantly	active	for	fear	in	social	
situations	and	3,496	were	active	in	physical	situations,	with	610	
overlapping	voxels.		In	each	of	10,000	Monte	Carlo	simulations,	we	
randomly	sampled	10,656	voxels	of	the	132,105	possible	for	social	fear,	
and	then	randomly	sampled	3,496	voxels	for	physical	fear	(i.e.,	
simulating	the	random	activation	of	voxels	in	each	condition).		We	then	
established	the	number	of	overlapping	voxels	active	in	both	sets.		
Across	10,000	simulations,	the	average	number	of	overlapping	voxels	
was	61.67,	with	the	95%	confidence	interval	ranging	from	47	to	77.5	
voxels.		Not	a	single	simulation	produced	an	overlap	equal	to	or	greater	
than	the	observed	value	of	610	voxels,	such	that	the	probability	of	
observing	this	value	was	p	<	.00001.		Thus,	the	observed	value	probably	
did	not	occur	by	chance,	but	was	more	likely	to	reflect	regularities	
associated	with	assembling	processes	for	fear	across	different	
situations.	

When	analogous	simulations	were	run	for	anger,	plan,	and	
observe,	similar	results	were	obtained.		For	anger,	the	observed	overlap	
of	350	voxels	fell	outside	the	95%	confidence	interval	for	random	
overlap	that	ranged	from	1	to	10	voxels,	with	a	mean	of	5.4.		For	plan,	
the	observed	overlap	of	292	voxels	fell	outside	the	95%	confidence	
interval	for	random	overlap	that	ranged	from	23	to	46	voxels,	with	a	
mean	of	34.14.		For	observe,	the	observed	overlap	of	306	voxels	fell	
outside	the	95%	confidence	interval	for	random	overlap	that	ranged	
from	13	to	32	voxels,	with	a	mean	of	21.81.		In	every	case,	not	a	single	
simulation	fell	above	the	observed	value,	indicating	that	its	chance	
occurrence	was	p	<	.00001.		Again,	the	observed	value	for	each	mental	
state	probably	reflected	regularities	associated	with	assembling	
processes	for	it	across	situations.	

Conjunction	analyses	of	fear	and	anger	across	the	same	
learning	condition.			

Monte	Carlo	analyses	assessed	the	likelihood	that	the	overlapping	
activations	across	fear	and	anger	within	a	given	situation	type	occurred	
by	chance	(analogous	to	analyses	reported	earlier).		For	physical	
situations,	the	observed	overlap	of	228	voxels	between	fear	and	anger	
fell	outside	the	95%	confidence	interval	for	random	overlap	that	
ranged	from	13	to	31.5	voxels,	with	a	mean	of	21.95.		For	social	
situations,	the	observed	overlap	of	3,494	voxels	between	fear	and	anger	
fell	outside	the	95%	confidence	interval	for	random	overlap	that	
ranged	from	222	to	285	voxels,	with	a	mean	of	252.96.		In	both	cases,	
not	a	single	simulation	fell	above	the	observed	value,	indicating	that	its	
chance	occurrence	was	p	<	.00001.		Thus,	the	observed	value	for	
overlapping	voxels	in	a	given	situation	type	probably	reflected	
regularities	associated	with	assembling	processes	within	it	across	fear	
and	anger.	 	
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Assessing	overlap	of	fear	and	anger	across	learning	groups	
Figure	S3	illustrates	the	three	steps	of	the	analysis	process,	with	

Steps	1	and	2	being	the	same	as	in	Figure	S1.		Again,	Steps	1	and	2	used	
conjunction	analyses	to	remove	irrelevant	activations	associated	with	
auditory	processing	from	the	activation	maps	for	fear	and	anger	(i.e.,	
activations	common	to	fear,	anger,	plan,	and	observe	in	a	given	situation	
learning	condition).		Specifically,	the	physical	baseline	was	removed	
from	the	activation	maps	for	fear	and	anger	in	the	physical	learning	
group,	and	the	social	baseline	was	removed	from	the	activation	maps	
for	fear	and	anger	in	the	social	learning	group.		Again,	these	
subtractions	removed	common	activations	whose	inclusion	would	
distort	conjunction	analyses	assessing	the	critical	hypotheses.		The	
images	for	the	physical	learning	group	in	Figure	2	show	the	clusters	in	
the	physical	baseline,	and	the	images	for	the	social	learning	group	in	
Figure	2	analogously	show	the	clusters	in	the	social	baseline	(both	in	
green).	

As	Step	3	in	Figure	S3	illustrates,	the	two	new	activation	maps	
created	for	fear	and	anger	in	the	same	learning	group	were	submitted	
to	a	conjunction	analysis,	once	for	the	social	learning	group,	and	once	
for	the	physical	learning	group.		In	each	of	these	analyses,	three	types	of	
voxels	were	identified:		(1)	voxels	active	only	for	fear,	(2)	voxels	active	
only	for	anger,	and	(3)	voxels	active	for	both	fear	and	anger.		As	
described	earlier,	each	conjunction	analysis	was	performed	once	at	an	
extent	threshold	of	221	voxels	(p	<	.05),	and	again	at	lower	extent	
threshold	of	110	and	60	voxels	(to	see	if	the	conjunction	results	were	
robust	when	smaller	clusters	were	included).		Figure	5	in	the	main	text	
displays	the	results	for	the	221-voxel	threshold.	

To	provide	a	thorough	listing	of	relevant	clusters,	Tables	S4	and	S5	
list	the	clusters	from	the	analyses	that	used	the	60-voxel	threshold.		
Cluster	listings	from	the	221-voxel	and	110-voxel	analyses	are	largely	
the	same,	except	for	the	absence	of	clusters	below	221	and	110	voxels,	
respectively.		Note	that	when	a	significant	cluster	was	divided	into	
parts	that	occurred	simultaneously	in	one	situation	and	in	both,	
clusters	could	become	smaller	than	the	original	extent	threshold	of	60	
voxels.		Thus,	Tables	S4	and	S5	include	cluster	fragments	down	to	20	
voxels.		Although	cluster	fragments	smaller	than	20	voxels	were	not	
included	in	these	tables,	all	fragments,	no	matter	how	small,	were	
included	in	the	voxel	counts	and	overlap	reported	next.		Thus,	the	voxel	
counts	in	Tables	S4	and	S5	do	not	add	up	to	those	in	Table	S6.	

Table	S6	summarizes	the	voxel	counts	and	overlap	across	clusters	
in	each	learning	group	from	Tables	S4	and	S5,	once	for	each	cluster	
threshold.	
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Table	S4.		Unique	and	shared	activations	for	fear	and	anger	from	a	conjunction	analysis	in	the	physical	learning	group.	
	 	

	 	 	 Cluster	 Max	 	 Voxel	 	 	
Brain	Region	 	 Brodmann	Area	 Volume	 Intensity	t	 x	 y	 z	
	 	
	
Unique	Activations	for	Fear	
	
R	superior/middle	temporal	 21/22	 829	 8.51	 45	 1	 -8	
R	insula	 13	
B	caudate/caudate	head/ACC	 	 811	 9.72	 -1	 21	 10	
B	culmen/	brainstem/pons	 	 592	 8.63	 -1	 -31	 -6	
				mammillary	body	
L	superior	temporal	 22	 269	 6.93	 -45	 -31	 4	
L	cuneus	 18	 216	 5.00	 -19	 -97	 -2	
R	superior/middle	frontal	 6	 209	 7.52	 31	 1	 42	
L	cingulate	gyrus	 23/24	 146	 6.83	 -23	 -15	 32	
L	insula/pre-central/	 13	 113	 6.72	 -59	 -7	 12	
				post-central	 43	
R	superior	temporal	 38	 111	 5.77	 53	 19	 -10	
				lOFC	 47	
L	precuneus	 7	 107	 6.00	 -3	 -77	 42	
L	cingulate	gyrus	 24	 105	 5.76	 -9	 7	 54	
L	cerebellum	(culmen)	 	 65	 5.21	 -9	 -45	 -6	
L	parahippocampal	gyrus	 	 64	 6.56	 -29	 -55	 2	
L	superior	temporal	 38	 62	 5.39	 -49	 3	 -8	
L	mid-frontal	gyrus	 6	 56	 4.73	 -41	 -1	 46	
L	insula	 13	 26	 4.59	 -41	 -7	 0	 	 	
	
Unique	Activations	for	Anger	
	
L	superior	temporal	lobe	 22	 236	 7.36	 -55	 9	 -2	
L	posterior	insula	 13	 179	 6.44	 -29	 -23	 26	
L	superior	temporal	 22	 119	 6.03	 65	 1	 -2	
L	mid-temporal		 21	
L	superior	temporal	 22	 109	 4.98	 -59	 -39	 20	
				angular	gyrus	
R	insula	 13	 102	 6.30	 43	 -15	 -8	
				claustrum	
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R	superior	temporal	 22	 68	 5.34	 67	 -39	 12	
R	mid-frontal	 9	 66	 4.64	 43	 23	 30	
R	pre-central	 6	 64	 5.14	 27	 1	 26	
L	mid-frontal	gyrus	 6	 48	 4.94	 -43	 1	 54	
R	STG	 22	 42	 5.05	 53	 -37	 18	
R	mid-frontal	gyrus	 6	 42	 5.26	 35	 3	 48	
L	STG	 38	 39	 5.78	 47	 9	 -10	
R	insula	 13	 39	 5.63	 25	 -29	 22	
R	mid-temporal	gyrus	 21	 26	 5.69	 53	 -21	 -6	
	
Shared	Activations	for	Fear	and	Anger	
	
R	mid/superior	frontal	 6	 84	 	5.96	(7.45)	 	33	(37)	 	1	(5)	 44	(46)	
R	mid-temporal	 21	 79	 6.29	(4.96)	 45	(47)	 -25	(-43)	 0	(8)	
L	insula	 13	 54	 4.76	(5.92)	 -43	(-47)	 -23	(-11)	 2	(-4)	
R	STG	 22	 41	 4.78	(5.18)	 53	(59)	 -41	(-43)	 12	(10)	
R	dlPFC	 9	 40	 4.31	(5.08)	 47	(39)	 17	(21)	 30	(30)	
L	insula	 13	 36	 5.16	(5.19)	 -41	(-43)	 -37	(-37)	 22	(22)	
L	mid-frontal	gyrus	 6	 36	 5.22	(4.83)	 -39	(-41)	 -1	(1)	 48	(54)	
L	cingulate	gyrus	 23	 33	 5.93	(4.39)	 -19	(-19)	 -9	(-7)	 34	(32)	
R	STG	 38/22	 31	 5.79	(9.16)	 51	(51)	 17	(15)	 -8	(-10)	
L	STG	 22	 21	 5.34	(5.17)	 -65	(-61)	 -39	(-39)	 16	(20)	 	
	 	

Note.		Activations	were	obtained	using	an	independent	voxel	threshold	of	p	<	.005	and	a	cluster	threshold	of	60	voxels,	in	each	of	the	two	situation	learning	
groups.		Clusters	having	221	voxels	or	larger	are	significant	at	p	<	.05.		Smaller	clusters	are	shown	to	provide	a	sense	of	weaker	activations.		Clusters	smaller	
than	60	voxels	resulted	from	the	conjunction	analysis	producing	cluster	fragments,	when	different	parts	of	a	cluster	were	shared	vs.	unique.		Cluster	fragments	
smaller	than	20	voxels	are	not	shown.		R	is	right,	L	is	left,	B	is	bilateral,	ACC	is	anterior	cingulate	cortex,	lOFC	is	lateral	orbitofrontal	cortex,	and	STG	is	superior	
temporal	gyrus.	
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	Table	S5.		Unique	and	shared	activations	for	fear	and	anger	from	a	conjunction	analysis	in	the	social	learning	group.	
	 	

	 	 	 Cluster	 Max	 	 Voxel	 	 	
Brain	Region	 	 Brodmann	Area	 Volume	 Intensity	t	 x	 y	 z	
	 	
	
Unique	Activations	for	Fear	
	
R	precuneus/angular	gyrus	 7/39	 3,778	 7.36	 13	 -73	 34	
				R	cuneus	 18/19	
				R	fusiform	gyrus/lingual/	 37	
				R	parahippocampal	gyrus/	
				R	cerebellum	(declive)	
				L	precuneus	 7	
				L	cuneus/L	lingual	 18/19	
R	superior/middle	temporal	 			21/22/40/42	 980	 7.37	 43	 -21	 -8	
R	insula	 13	
L	insula	 13	 526	 7.29	 -65	 -41	 18	
L	pre/post-central	 43	
				superior	temporal	 22	
L	fusiform	gyrus	 37	 393	 5.77	 -31	 -69	 -22	
				cerebellum	(culmen)	
R	pre-central	 6	 383	 5.78	 35	 7	 40	
R	mid/inferior	frontal	 9/46	 349	 5.88	 43	 19	 26	
				R	pre-central	 6	
				anterior	insula	 13	
R	thalamus	(medial	geniculum	body)	 	 172	 5.43	 11	 -25	 -2	
				parahippocampal	gyrus	 27	
L	pre-central	 6	 126	 5.41	 -43	 -9	 42	
L	posterior	insula	 13	 118	 6.72	 -29	 -35	 18	
L	cuneus	 19	 110	 5.32	 -45	 -71	 -8	
L	fusiform	 18	 109	 5.33	 -23	 -61	 -10	
				lingual	gyrus	 19	
L	cingulate	gyrus	 24	 106	 8.13	 -23	 -5	 28	
L	pre-frontal	 10	 94	 8.53	 -35	 55	 24	
R	pre-frontal	 10	 92	 5.64	 35	 43	 14	
L	PCC	 23	 72	 5.09	 -5	 -31	 28	
L	precuneus	 7	 72	 5.14	 -17	 -51	 36	
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L	OFC	 47	 63	 5.46	 -13	 31	 6	
				ACC	 24	
R	dorsal	anterior	cingulate	gyrus	 32	 55	 5.03	 11	 7	 42	
R	STG	 22	 53	 5.52	 61	 3	 6	
L	precuneus	 7	 50	 4.36	 -5	 -53	 52	
L	mid-temporal	 21	 20	 3.97	 -67	 -31	 2	
	
Unique	Activations	for	Anger	
	
L	cerebellum	(declive)	 	 1,194	 6.83	 -37	 -69	 -4	
L	cuneus/lingual	gyrus	 17/18	
R	fusiform	gyrus	 37	 673	 7.72	 37	 -53	 2	
R	cuneus/	lingual	gyrus	 17/18	
L	cingulate	gyrus	 23	 516	 7.25	 -11	 -13	 32	
L	superior	parietal	 7/40	
R	cingulate	gyrus	 23	 386	 7.78	 23	 -19	 34	
R	pre-central	 6	 381	 5.25	 29	 5	 26	
R	mid-frontal	 9/45	
L	superior	temporal	 22/38	 337	 6.57	 -41	 3	 -10	
L	mid-temporal	 22	 253	 5.82	 -35	 -37	 20	
				posterior	insula	 13	
R	superior	temporal	 22/38	 231	 6.75	 53	 1	 -14	
R	mid-temporal	 21	
L	mid-frontal	 9	 187	 6.81	 -31	 7	 26	
R	fusiform	 19/37	 115	 5.42	 41	 -65	 -10	
L	medial	frontal	 6	 111	 6.63	 -15	 -3	 48	
R	cuneus	 19	 102	 4.56	 25	 -89	 28	
R	precuneus	 7/31	 81	 4.88	 15	 -61	 32	
L	posterior	cingulate	 29	 66	 6.27	 -13	 -41	 10	
L	thalamus	(medial	geniculum	body)	 	 61	 6.30	 -13	 -25	 -2	
R	mid-temporal	gyrus	 21	 56	 4.62	 59	 -43	 2	
R	precuneus	 7	 56	 4.76	 -1	 -49	 48	
R	declive	 	 26	 4.56	 17	 -61	 -16	
R	declive	 	 22	 4.99	 19	 -67	 -20	
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Shared	Activations	for	Fear	and	Anger	
	
R	mid/superior	temporal	 21/22	 727	 	8.39	(10.94)	 	45	(49)	 	-17	(-5)	 -10	(-6)	
L	fusiform	gyrus/	 37	 718	 6.80	(7.24)	 -29	(-25)	 -69	(-55)	 -20	(-6)		
				cerebellum	(declive)/	
				cuneus	 19	
R	cuneus	 18	 444	 7.25	(5.28)	 33	(11)	 -73	(-79)	 0	(16)	
R	mid-frontal	 9	 267	 5.95	(5.89)	 39	(41)	 5	(1)	 30	(38)	
L	superior	temporal	 22	 196	 	8.16	(6.59)	 -63	(-57)	 -41	(-45)	 18	(18)	
L	mid-frontal	 9	 188	 	5.29	(8.30)	 -35	(-35)	 3	(3)	 30	(28)	
L	precuneus	 7	 159	 6.42	(6.82)	 -27	(-29)	 -67	(-59)	 34	(36)	
L	superior	temporal	 22	 154	 	6.20	(6.42	 -35	(-59)	 -21	(-25)	 14	(2)	
				insula	 13	
R	cuneus	 18	 94	 	5.64	(5.17)	 41	(47)	 -63	(-77)	 -14	(-8)	
				fusiform	gyrus	 19	
R	cerebellum	 	 73	 	5.16	(5.48)	 23	(21)	 -61	(-61)	 -20	(-20)	
R	inferior	parietal/precuneus	 7	 67	 5.94	(5.13)	 23	(29)	 -53	(-49)	 40	(38)	
L	superior	temporal	 38	 60	 	5.19	(7.16)	 -49	(-61)	 3	(3)	 -6	(-2)	
L	cingulate	gyrus	 29	 60	 6.39	(4.62)	 -29	(-23)	 -31	(-31)	 28	(26)	
L	cingulate	gyrus	 29	 54	 6.04	(5.73)	 -23	(-19)	 -7	(-13)	 30	(34)	
L	STG	 22	 45	 5.55	(4.74)	 -67	(-67)	 -5	(-7)	 6	(8)	
L	declive	 	 34	 4.48	(5.18)	 -5	(-9)	 -67	(-65)	 -16	(-16)	
L	precuneus	 7	 31	 5.37	(4.97)	 -3	(-3)	 -49	(-49)	 52	(50)	
R	inferior	parietal	 40	 29	 5.38	(7.64)	 29	(27)	 -29	(-29)	 26	(26)	
	 	
	
Note.		Activations	were	obtained	using	an	independent	voxel	threshold	of	p	<	.005	and	a	cluster	threshold	of	60	voxels,	in	each	of	the	two	situation	
learning	groups.		Clusters	having	221	voxels	or	larger	are	significant	at	p	<	.05.		Smaller	clusters	are	shown	to	provide	a	sense	of	weaker	activations.		
Clusters	smaller	than	60	voxels	resulted	from	the	conjunction	analysis	producing	cluster	fragments,	when	different	parts	of	a	cluster	were	shared	vs.	
unique.		Cluster	fragments	smaller	than	20	voxels	are	not	shown.		R	is	right,	L	is	left,	B	is	bilateral,	ACC	is	anterior	cingulate	cortex,	PCC	is	posterior	
cingulate	cortex,	OFC	is	orbitofrontal	cortex,	and	STG	is	superior	temporal	gyrus.	
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	Table	S6.		Proportions	of	shared	(non-baseline)	voxels	for	fear	and	anger	in	either	the	physical	or	social	learning	group,	together	with	the	relevant	
voxel	frequencies.	
	 	

	 	 Fear	 Anger	
	 	 	 	 	

Learning	 Proportion	 Shared	Non-	 Unique	 Total	 Proportion		 Shared	Non-	 Unique	 Total	
Group	 Shared	Voxels	 Baseline	Voxels	 Voxels	 Voxels	 Shared		Voxels	 Baseline	Voxels	 Voxels	 	Voxels	
	 	
	
Cluster	Threshold	=	221	Voxels	
	
Physical	learning	 .08	 288	 3,208	 3,496	 .24	 288	 909	 1,197	
	
	Social	learning	 .33	 3,494	 7,162	 10,656	 .42	 3,494	 4,833	 8,327	
	
Cluster	Threshold	=	110	Voxels	
	
Physical	learning	 .12	 449	 3,442	 3,891	 .30	 449	 1,043	 1,492	
	
	Social	learning	 .32	 3,548	 7,440	 10,988	 .42	 3,548	 4,890	 8,438	
	
Cluster	Threshold	=	60	Voxels	
	
Physical	learning	 .12	 544	 3,847	 4,391	 .30	 544	 1,263	 1,807	
	
	Social	learning	 .31	 3,602	 7,866	 11,468	 .42	 3,602	 5,052	 8,654	
	 	

Note.		All	voxels	from	the	physical	and	social	baselines	for	the	mental	states	have	been	removed	from	this	analysis	(5,265	voxels	from	the	physical	
baseline,	4,899	voxels	from	the	social	baseline).		Only	non-baseline	voxels	are	included.		Voxel	totals	in	Tables	S4	and	S5	do	not	add	up	to	the	totals	here,	
because	fragments	from	the	conjunction	analysis	smaller	than	20	voxels	were	not	included	in	the	earlier	tables,	but	were	included	here	(see	the	text	for	
details).	
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Situation	Anticipation	Analysis	
Whereas	all	other	results	reported	in	this	article	address	

activations	for	the	mental	states	during	the	initial	3	sec	period	of	the	
scanning	trials,	this	analysis	addresses	activations	for	the	situations	
during	the	subsequent	9	sec	period.	

Each	analysis	was	analogous	to	the	baseline	analysis	for	the	
mental	state	cues	illustrated	in	Step	1	of	Figure	S1,	except	that	it	was	
performed	on	the	9	sec	activations	for	the	situations,	rather	than	on	the	
3	sec	activations	for	the	mental	states.		Because	of	the	catch	trial	design,	
activations	for	the	mental	states	were	removed	from	the	activations	for	
the	situations	assessed	here.	

To	establish	activations	for	the	physical	situations,	a	conjunction	
analysis	identified	clusters	that	were	significantly	active	for	the	
physical	training	group	following	each	of	the	four	mental	state	
conditions	(fear,	anger,	plan,	observe).		To	analogously	establish	
activations	for	the	social	conditions,	a	conjunction	analysis	identified	
clusters	that	were	significantly	active	for	the	social	training	group	
following	the	four	mental	states.		Table	S7	presents	the	results	of	these	
two	conjunction	analyses.	
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Table	S7.			Shared	activations	during	the	9	sec	situation	period	in	a	conjunction	analysis	across	fear,	anger,	plan,	and	observe	for	each	learning	group.	
______________________________________________________________________________________________________________________________________________________________________________	

	 Fear	 Anger		 Plan	 Observe		
	 _____________________	 ________________________	 ______________________	 ________________________	

	 	 	 Cluster	 Max	 Voxel	 	 Max	 	Voxel	 	 Max	 	Voxel	 	 Max	 	 Voxel	
Brain	Region	 	 Brodmann	Area	 Volume	 Intensity	t	 x	 y	 z	 Intensity	t	 x	 y	 z	 Intensity	t	 x	 y	 z	 Intensity	t	 x	 y	 z	
______________________________________________________________________________________________________________________________________________________________________________	
	
Physical	Learning		Group	
	
L	posterior	insula	 13	 3,189	 12.82	 -37	 -25	 14	 10.65	 -35	 -25	 12	 13.01	 -37	 -25	 14	 13.27	 -37	 -25	 14	
				superior	temporal	lobe	22/38/41/42	
L	anterior	insula		 13	 3,064	 8.71	 -41	 25	 28	 7.48	 -39	 7	 46	 10.14	 -47	 23	 30	 8.64	 -41	 21	 28	
			IFG	 	 46	
			superior	frontal	 6/8/9	
			post-central	gyrus	 4	
R	posterior	insula	 13	 2,785	 15.51	 49	 -17	 10	 15.02	 51	 -17	 10	 14.41	 51	 -17	 10	 15.52	 51	 -17	 10	
			superior	temporal	22/38/41/42	
L	precuneus	 	 7	 131	 5.36	 -29	 -55	 42	 5.00	 -21	 -63	 30	 5.37	 -29	 -65	 38	 4.97	 -31	 -57	 42	
L	thalamus/brainstem	 	 98	 8.73	 -9	 -27	 -4	 5.87	 -9	 -25	 -4	 5.15	 -17	 -23	 0	 6.40	 -9	 -27	 -2	
R	anterior	insula		 13	 70	 7.19	 33	 25	 10	 5.04	 31	 23	 8	 6.22	 31	 25	 10	 5.85	 33	 23	 8	
R	mid-frontal	gyrus	 46	 65	 5.70	 49	 25	 30	 4.95	 45	 23	 26	 4.68	 53	 23	 34	 4.99	 47	 21	 26	
	
Social	Learning	Group	
	
L	superior	temporal			22/38/41/48	 8,627	 13.64	 -45	 -13	 8	 13.62	 -47	 -13	 6	 15.54	 -63	 -23	 8	 15.13	 -63	 -23	 8	
			posterior	insula	 13	
			IFG	 	 45/47	
			mid-frontal	 	 46	
			superior	frontal	 9	
			pre-central	 	 4/6	
			post-central	 	 2/3	
			inferior	parietal	 40	
			superior	parietal	 7	
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R	posterior	insula	 13	 3,585	 15.71	 41	 -19	 8	 18.15	 41	 -19	 8	 16.61	 41	 -19	 8	 15.27	 41	 -19	 8	
				superior	temporal			22/38/41/42	
	
B	brain	stem	 	 	 1,687	 12.35	 5	 -39	 18	 19.596	 -3	 -9	 12	 13.11	 -9	 -25	 -4	 10.38	 13	 -23	 -2	
				pulvinar	
				mammillary	body	
				thalamus	
PCC	 	 23/29	
B	medial	frontal	 	 6/32	 1,535	 7.62	 -3	 11	 42	 9.72	 1	 -1	 66	 9.05	 -1	 11	 44	 9.55	 -9	 3	 56	
				cingulate	gyrus	 24	
R	mid-frontal	gyrus	 9/46	 869	 7.70	 53	 21	 28	 7.84	 43	 7	 40	 7.41	 51	 25	 34	 9.76	 51	 21	 28	
				superior	frontal	 6	
				pre-central	 	 6	
R.	cerebellum/declive	 	 776	 9.08	 3	 -73	 -18	 12.05	 5	 -67	 -14	 8.17	 13	 -67	 -20	 9.28	 29	 -49	 -24	
					occipital	lobe	 	 18	
B	precuneus	 	 7	 547	 8.24	 -1	 -75	 48	 9.28	 -1	 -67	 44	 11.76	 -5	 -65	 34	 7.44	 -3	 -75	 50	
L	cerebellum/declive	 	 299	 7.29	 -31	 -51	 -24	 10.58	 -27	 -55	 -20	 6.63	 -21	 -61	 -22	 8.25	 -27	 -51	 -22	
				fusiform	gyrus		 37	
R	supramarginal	gyrus	 	 148	 5.69	 33	 -51	 34	 7.69	 35	 -51	 42	 5.70	 37	 -53	 42	 11.19	 33	 -51	 36	
R	anterior	insula		 13	 117	 7.04	 29	 23	 6	 6.16	 31	 21	 8	 7.20	 33	 23	 6	 13.78	 29	 23	 8	
______________________________________________________________________________________________________________________________________________________________________________	

Note.		Activations	were	obtained	using	an	independent	voxel	threshold	of	p	<	.005	and	a	cluster	threshold	of	60	voxels,	in	each	situation	training	.		
Clusters	having	221	voxels	or	larger	are	significant	at	p	<	.05.		Smaller	clusters	are	shown	to	provide	a	sense	of	weaker	activations.		R	is	right,	L	is	left,	B	
is	bilateral,	IFG	is	inferior	frontal	gyrus,	PCC	is	posterior	cingulate	cortex.	
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