594 research outputs found

    788-3 Effect of Body Composition on Exercise Performance in Patients with Heart Failure

    Get PDF
    Changes in fat and skeletal muscle Volume may contribute to the exercise intolerance reported by patients with heart failure. To test this hypothesis, we measured hemodynamic and ventilatory responses to exercise in 65 patients with chronic heart failure. Body composition was determined by dual-energy x-ray absorptiometry. Peak exercise VO2 averaged 13.2±2.9ml/min/kg, peak exercise cardiac index 4.5±1.1 L/min/m2, lean body weight 55±12kg, lean leg weight 17.2±3.8kg and total fat 27±11kg. Thirty-eight (58%) of the patients were obese, as defined by a percentage fat >30%. Twenty-four patients (37%) exhibited lean body wt/height <300gm/cm, consistent with muscle atrophy. Peak exercise VO2 correlated closely with total leg muscle:There was no relationship between VO2/gm leg muscle and the lean body wt/height index, suggesting that muscle atrophy does not affect muscle performance/unit of muscle. VO2/kg muscle was higher in obese vs non-obese patients (72+14 vs 59+13 mllmin/kg (p<0.01) whereas peak VO2/kg body weight was similar (13.0+3.3 vs 13.2+2.6 mllmin/kg). since body weight inCludes fat. These findings suggest that skeletal muscle volume influences exercise capacity in patients with heart failure. Exercise capacity in obese patients is underestimated by normalizing for body weight

    Mesoscopic Fluctuations in Quantum Dots in the Kondo Regime

    Full text link
    Properties of the Kondo effect in quantum dots depend sensitively on the coupling parameters and so on the realization of the quantum dot -- the Kondo temperature itself becomes a mesoscopic quantity. Assuming chaotic dynamics in the dot, we use random matrix theory to calculate the distribution of both the Kondo temperature and the conductance in the Coulomb blockade regime. We study two experimentally relevant cases: leads with single channels and leads with many channels. In the single-channel case, the distribution of the conductance is very wide as TKT_K fluctuates on a logarithmic scale. As the number of channels increases, there is a slow crossover to a self-averaging regime.Comment: 4 pages, 3 figure

    Magnetotransport through a strongly interacting quantum dot

    Full text link
    We study the effect of a magnetic field on the conductance through a strongly interacting quantum dot by using the finite temperature extension of Wilson's numerical renormalization group method to dynamical quantities. The quantum dot has one active level for transport and is modelled by an Anderson impurity attached to left and right electron reservoirs. Detailed predictions are made for the linear conductance and the spin-resolved conductance as a function of gate voltage, temperature and magnetic field strength. A strongly coupled quantum dot in a magnetic field acts as a spin filter which can be tuned by varying the gate voltage. The largest spin-filtering effect is found in the range of gate voltages corresponding to the mixed valence regime of the Anderson impurity model.Comment: Revised version, to appear in PRB, 4 pages, 4 figure

    Dietary fibre to reduce colon cancer risk in Alaska Native people: the Alaska FIRST randomised clinical trial protocol

    Get PDF
    Introduction Diet, shown to impact colorectal cancer (CRC) risk, is a modifiable environmental factor. Fibre foods fermented by gut microbiota produce metabolites that not only provide food for the colonic epithelium but also exert regulatory effects on colonic mucosal inflammation and proliferation. We describe methods used in a double-blinded, randomised, controlled trial with Alaska Native (AN) people to determine if dietary fibre supplementation can substantially reduce CRC risk among people with the highest reported CRC incidence worldwide. Methods and analyses Eligible patients undergoing routine screening colonoscopy consent to baseline assessments and specimen/data collection (blood, urine, stool, saliva, breath and colon mucosal biopsies) at the time of colonoscopy. Following an 8-week stabilisation period to re-establish normal gut microbiota post colonoscopy, study personnel randomise participants to either a high fibre supplement (resistant starch, n=30) or placebo (digestible starch, n=30) condition, repeating stool sample collection. During the 28-day supplement trial, each participant consumes their usual diet plus their supplement under direct observation. On day 29, participants undergo a flexible sigmoidoscopy to obtain mucosal biopsy samples to measure the effect of the supplement on inflammatory and proliferative biomarkers of cancer risk, with follow-up assessments and data/specimen collection similar to baseline. Secondary outcome measures include the impact of a high fibre supplement on the oral and colonic microbiome and biofluid metabolome. Ethics and dissemination Approvals were obtained from the Alaska Area and University of Pittsburgh Institutional Review Boards and Alaska Native Tribal Health Consortium and Southcentral Foundation research review bodies. A data safety monitoring board, material transfer agreements and weekly study team meetings provide regular oversight throughout the study. Study findings will first be shared with AN tribal leaders, health administrators, providers and community members. Peer-reviewed journal articles and conference presentations will be forthcoming once approved by tribal review bodies

    Interference and interaction effects in multi-level quantum dots

    Full text link
    Using renormalization group techniques, we study spectral and transport properties of a spinless interacting quantum dot consisting of two levels coupled to metallic reservoirs. For strong Coulomb repulsion UU and an applied Aharonov-Bohm phase ϕ\phi, we find a large direct tunnel splitting Δ(Γ/π)cos(ϕ/2)ln(U/ωc)|\Delta|\sim (\Gamma/\pi)|\cos(\phi/2)|\ln(U/\omega_c) between the levels of the order of the level broadening Γ\Gamma. As a consequence we discover a many-body resonance in the spectral density that can be measured via the absorption power. Furthermore, for ϕ=π\phi=\pi, we show that the system can be tuned into an effective Anderson model with spin-dependent tunneling.Comment: 5 pages, 4 figures included, typos correcte

    Singlet-Triplet Transition in lateral Quantum Dots: A Numerical Renormalization Group Study

    Full text link
    We discuss transport through a lateral quantum dot in the vicinity of a singlet-triplet spin transition in its ground state. Extracting the scattering phase shifts from the numerical renormalization group spectra, we determine the linear conductance at zero temperature as a function of a Zeeman field and the splitting of the singlet and triplet states. We find reduced low-energy transport, and a non-monotonic magnetic field dependence both in the singlet and the triplet regime. For a generic set of dot parameters and no Zeeman splitting, the singlet-triplet transition may be identified with the conductance maximum. The conductance is least sensitive to the magnetic field in the region of the transition, where it decreases upon application of a magnetic field. Our results are in good agreement with recent experimental data.Comment: 9 pages Revtex, 10 eps figure

    Exploiting DNA damage repair defects for effective targeting of acute myeloid leukaemia by PARP inhibitors

    Get PDF
    Abstract for 24th Biennial Congress of the European Association for Cancer Research, 9–12 July 2016, Manchester, UK. Poster Session: Cancer Genomics, Epigenetics and Genome Instability II: Monday 11 July 201

    Interference in interacting quantum dots with spin

    Full text link
    We study spectral and transport properties of interacting quantum dots with spin. Two particular model systems are investigated: Lateral multilevel and two parallel quantum dots. In both cases different paths through the system can give rise to interference. We demonstrate that this strengthens the multilevel Kondo effect for which a simple two-stage mechanism is proposed. In parallel dots we show under which conditions the peak of an interference-induced orbital Kondo effect can be split.Comment: 8 pages, 8 figure

    Space Shuttle Solid Rocket Booster Lightweight Recovery System

    Get PDF
    The cancellation of the Advanced Solid Rocket Booster Project and the earth-to-orbit payload requirements for the Space Station dictated that the National Aeronautics and Space Administration (NASA) look at performance enhancements from all Space Transportation System (STS) elements (Orbiter Project, Space Shuttle Main Engine Project, External Tank Project, Solid Rocket Motor Project, & Solid Rocket Booster Project). The manifest for launching of Space Station components indicated that an additional 12-13000 pound lift capability was required on 10 missions and 15-20,000 pound additional lift capability is required on two missions. Trade studies conducted by all STS elements indicate that by deleting the parachute Recovery System (and associated hardware) from the Solid Rocket Boosters (SRBS) and going to a lightweight External Tank (ET) the 20,000 pound additional lift capability can be realized for the two missions. The deletion of the parachute Recovery System means the loss of four SRBs and this option is two expensive (loss of reusable hardware) to be used on the other 10 Space Station missions. Accordingly, each STS element looked at potential methods of weight savings, increased performance, etc. As the SRB and ET projects are non-propulsive (i.e. does not have launch thrust elements) their only contribution to overall payload enhancement can be achieved by the saving of weight while maintaining adequate safety factors and margins. The enhancement factor for the SRB project is 1:10. That is for each 10 pounds saved on the two SRBS; approximately 1 additional pound of payload in the orbiter bay can be placed into orbit. The SRB project decided early that the SRB recovery system was a prime candidate for weight reduction as it was designed in the early 1970s and weight optimization had never been a primary criteria

    Nonequilibrium Transport through a Kondo Dot in a Magnetic Field: Perturbation Theory

    Get PDF
    Using nonequilibrium perturbation theory, we investigate the nonlinear transport through a quantum dot in the Kondo regime in the presence of a magnetic field. We calculate the leading logarithmic corrections to the local magnetization and the differential conductance, which are characteristic of the Kondo effect out of equilibrium. By solving a quantum Boltzmann equation, we determine the nonequilibrium magnetization on the dot and show that the application of both a finite bias voltage and a magnetic field induces a novel structure of logarithmic corrections not present in equilibrium. These corrections lead to more pronounced features in the conductance, and their form calls for a modification of the perturbative renormalization group.Comment: 16 pages, 7 figure
    corecore