1,302 research outputs found
Coronal Fe XIV Emission During the Whole Heliosphere Interval Campaign
Solar Cycle 24 is having a historically long and weak start. Observations of
the Fe XIV corona from the Sacramento Peak site of the National Solar
Observatory show an abnormal pattern of emission compared to observations of
Cycles 21, 22, and 23 from the same instrument. The previous three cycles have
shown a strong, rapid "Rush to the Poles" (previously observed in polar crown
prominences and earlier coronal observations) in the parameter N(t,l,dt)
(average number of Fe XIV emission features per day over dt days at time t and
latitude l). Cycle 24 displays a weak, intermittent, and slow "Rush" that is
apparent only in the northern hemisphere. If the northern Rush persists at its
current rate, evidence from the Rushes in previous cycles indicates that solar
maximum will occur in early 2013 or late 2012, at least in the northern
hemisphere. At lower latitudes, solar maximum previously occurred when the time
maximum of N(t,l,365) reached approximately 20{\deg} latitude. Currently, this
parameter is at or below 30{\deg}and decreasing in latitude. Unfortunately, it
is difficult at this time to calculate the rate of decrease in N(t,l,365).
However, the southern hemisphere could reach 20{\deg} in 2011. Nonetheless,
considering the levels of activity so far, there is a possibility that the
maximum could be indiscernibleComment: 8 pages, 4 figures; Solar Physics Online First, 2011
http://www.springerlink.com/content/b5kl4040k0626647
Critical temperature for the two-dimensional attractive Hubbard Model
The critical temperature for the attractive Hubbard model on a square lattice
is determined from the analysis of two independent quantities, the helicity
modulus, , and the pairing correlation function, . These
quantities have been calculated through Quantum Monte Carlo simulations for
lattices up to , and for several densities, in the
intermediate-coupling regime. Imposing the universal-jump condition for an
accurately calculated , together with thorough finite-size scaling
analyses (in the spirit of the phenomenological renormalization group) of
, suggests that is considerably higher than hitherto assumed.Comment: 5 pages, 6 figures. Accepted for publication in Phys. Rev.
Foam Diagram Summation at Finite Temperature
We show that large- theory is not trivial if one accepts the
presence of a tachyon with a truly huge mass, and that it allows exact
calculation. We use it to illustrate how to calculate the exact resummed
pressure at finite temperature and verify that it is infrared and ultraviolet
finite even in the zero-mass case. In 3 dimensions a residual effect of the
resummed infrared divergences is that at low temperature or strong coupling the
leading term in the interaction pressure becomes independent of the coupling
and is 4/5 of the free-field pressure. In 4 dimensions the pressure is
well-defined provided that the temperature is below the tachyon mass. We
examine how rapidly this expansion converges and use our analysis to suggest
how one might reorganise perturbation theory to improve the calculation of the
pressure for the QCD plasma.Comment: 18 pages plain tex, with 8 figures embedded with epsf. Equation
(2.15) has been corrected and the consequent changes made to the figures. A
further analytic result has been added to the 3-dimensional calculatio
Cosmic Acceleration in Brans-Dicke Cosmology
We consider Brans-Dicke theory with a self-interacting potential in Einstein
conformal frame. We show that an accelerating expansion is possible in a
spatially flat universe for large values of the Brans-Dicke parameter
consistent with local gravity experiments.Comment: 10 Pages, 3 figures, To appear in General Relativity and Gravitatio
Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes
Due to its large surface area and strongly attractive potential, a bundle of
carbon nanotubes is an ideal substrate material for gas storage. In addition,
adsorption in nanotubes can be exploited in order to separate the components of
a mixture. In this paper, we investigate the preferential adsorption of D_2
versus H_2(isotope selectivity) and of ortho versus para(spin selectivity)
molecules confined in the one-dimensional grooves and interstitial channels of
carbon nanotube bundles. We perform selectivity calculations in the low
coverage regime, neglecting interactions between adsorbate molecules. We find
substantial spin selectivity for a range of temperatures up to 100 K, and even
greater isotope selectivity for an extended range of temperatures,up to 300 K.
This isotope selectivity is consistent with recent experimental data, which
exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed
in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure
THE ISOTRON
Most methods of separating isotopes depend on the use of a large magnetic field. The isotron is an electromagnetic device for separating isotopes, but it effects the separation by the use of radiofrequency voltages instead of magnetic fields. It has the advantage that plane sources of large area can be used instead of the slit sources to which most magnetic methods are limited. Before entering into any discussion of the details, a simplified description of the principles of the method is given
- …
