2,826 research outputs found

    In vivo compartmental analysis of leukocytes in mouse lungs

    Get PDF
    The lung has a unique structure consisting of three functionally different compartments (alveolar, interstitial, and vascular) situated in an extreme proximity. Current methods to localize lung leukocytes using bronchoalveolar lavage and/or lung perfusion have significant limitations for determination of location and phenotype of leukocytes. Here we present a novel method using in vivo antibody labeling to enable accurate compartmental localization/quantification and phenotyping of mouse lung leukocytes. Anesthetized C57BL/6 mice received combined in vivo intravenous and intratracheal labeling with fluorophore-conjugated anti-CD45 antibodies, and lung single-cell suspensions were analyzed by flow cytometry. The combined in vivo intravenous and intratracheal CD45 labeling enabled robust separation of the alveolar, interstitial, and vascular compartments of the lung. In naive mice, the alveolar compartment consisted predominantly of resident alveolar macrophages. The interstitial compartment, gated by events negative for both intratracheal and intravenous CD45 staining, showed two conventional dendritic cell populations, as well as a Ly6C(lo) monocyte population. Expression levels of MHCII on these interstitial monocytes were much higher than on the vascular Ly6C(lo) monocyte populations. In mice exposed to acid aspiration-induced lung injury, this protocol also clearly distinguished the three lung compartments showing the dynamic trafficking of neutrophils and exudative monocytes across the lung compartments during inflammation and resolution. This simple in vivo dual-labeling technique substantially increases the accuracy and depth of lung flow cytometric analysis, facilitates a more comprehensive examination of lung leukocyte pools, and enables the investigation of previously poorly defined “interstitial” leukocyte populations during models of inflammatory lung diseases

    A simulation model of the Devils Hole pupfish population using monthly length-frequency distributions

    Get PDF
    The Devils Hole pupfish, Cyprinodon diabolis, is a federally-endangered fish that is endemic to Devils Hole, a discontiguous part of Death Valley National Park in Nye County, Nevada. Due to its status, Devils Hole pupfish monitoring must be non-obtrusive and thereby exclude techniques that require handling fish. Due to a recent decline in pupfish abundance, Devils Hole pupfish managers have expressed a need for a model that describes population dynamics. This population model would be used to identify vulnerable life history stage(s) and inform management actions. We constructed a set of individualbased simulation models designed to explore effects of population processes and evaluate assumptions. We developed a baseline model, whose output best resembled both observed length-frequency data and predicted intraannual abundance patterns. We then ran simulations with 5 % increases in egg-larval, juvenile, and adult survival rates to better understand Devils Hole pupfish life history, thereby helping identify vulnerable life history stages that should become the target of management actions. Simulation models with temporally constant adult, juvenile, and egg-larval survival rates were able to reproduce observed length-frequency distributions and predicted intra-annual population patterns. In particular, models with monthly adult and juvenile survival rates of 80 % and an egg-larval survival rate of 4.7 % replicated patterns in observed data. Population growth was most affected by 5 % increases in egg-larval survival, whereas adult and juvenile survival rates had similar but lesser effects on population growth. Outputs from the model were used to assess factors suspected of influencing Devils Hole pupfish population decline

    Alveolar macrophage-derived microvesicles mediate acute lung injury

    No full text
    Background Microvesicles (MVs) are important mediators of intercellular communication, packaging a variety of molecular cargo. They have been implicated in the pathophysiology of various inflammatory diseases; yet, their role in acute lung injury (ALI) remains unknown. Objectives We aimed to identify the biological activity and functional role of intra-alveolar MVs in ALI. Methods Lipopolysaccharide (LPS) was instilled intratracheally into C57BL/6 mice, and MV populations in bronchoalveolar lavage fluid (BALF) were evaluated. BALF MVs were isolated 1 hour post LPS, assessed for cytokine content and incubated with murine lung epithelial (MLE-12) cells. In separate experiments, primary alveolar macrophage-derived MVs were incubated with MLE-12 cells or instilled intratracheally into mice. Results Alveolar macrophages and epithelial cells rapidly released MVs into the alveoli following LPS. At 1 hour, the dominant population was alveolar macrophage-derived, and these MVs carried substantive amounts of tumour necrosis factor (TNF) but minimal amounts of IL-1β/IL-6. Incubation of these mixed MVs with MLE-12 cells induced epithelial intercellular adhesion molecule-1 (ICAM-1) expression and keratinocyte-derived cytokine release compared with MVs from untreated mice (p<0.001). MVs released in vitro from LPS-primed alveolar macrophages caused similar increases in MLE-12 ICAM-1 expression, which was mediated by TNF. When instilled intratracheally into mice, these MVs induced increases in BALF neutrophils, protein and epithelial cell ICAM-1 expression (p<0.05). Conclusions We demonstrate, for the first time, the sequential production of MVs from different intra-alveolar precursor cells during the early phase of ALI. Our findings suggest that alveolar macrophage-derived MVs, which carry biologically active TNF, may play an important role in initiating ALI

    Relationship of Enhanced Liver Fibrosis Score with Pediatric Nonalcoholic Fatty Liver Disease Histology and Response to Vitamin E or Metformin

    Get PDF
    OBJECTIVES: To study the diagnostic performance of the enhanced liver fibrosis score (ELF) for detecting different stages of fibrosis and its usefulness in detecting histologic response to vitamin E or metformin in children with nonalcoholic fatty liver disease who participated in the Vitamin E or Metformin for the Treatment Of NAFLD In Children (TONIC) trial. STUDY DESIGN: ELF was measured at baseline and weeks 24, 48, and 96 on sera from 166 TONIC participants. Associations between ELF with baseline and end of trial (EOT) fibrosis stages and other histologic features were assessed using χ2 tests and logistic regression models. RESULTS: ELF was significantly associated with severity of fibrosis at baseline and EOT. ELF areas under the curve for discriminating patients with clinically significant and advanced fibrosis were 0.70 (95% CI, 0.60-0.80) and 0.79 (95% CI, 0.69-0.89), respectively. A 1-unit decrease in ELF at EOT was associated with overall histologic improvement (OR, 1.86; 95% CI, 1.11-3.14; P = .02), resolution of steatohepatitis (OR, 1.88; 95% CI, 1.09-3.25; P = .02), improvement in steatosis grade (OR, 1.76; 95% CI, 1.06-2.82; P = .03), and hepatocellular ballooning (OR, 1.79; 95% CI, 1.06-3.00; P = .03), but not with improvement in fibrosis stage (OR, 1.26; 95% CI, 0.78-2.03; P = .34). CONCLUSIONS: ELF was associated with fibrosis stage in children who participated in TONIC. Although not associated with improvement in fibrosis, a decrease in ELF at EOT was associated with Nonalcoholic Steatohepatitis resolution and improvement in nonalcoholic fatty liver disease histology. ELF may be a useful noninvasive test to monitor treatment response in children with nonalcoholic fatty liver disease

    Do big athletes have big hearts? Impact of extreme anthropometry upon cardiac hypertrophy in professional male athletes.

    Get PDF
    AIM: Differentiating physiological cardiac hypertrophy from pathology is challenging when the athlete presents with extreme anthropometry. While upper normal limits exist for maximal left ventricular (LV) wall thickness (14 mm) and LV internal diameter in diastole (LVIDd, 65 mm), it is unknown if these limits are applicable to athletes with a body surface area (BSA) >2.3 m(2). PURPOSE: To investigate cardiac structure in professional male athletes with a BSA>2.3 m(2), and to assess the validity of established upper normal limits for physiological cardiac hypertrophy. METHODS: 836 asymptomatic athletes without a family history of sudden death underwent ECG and echocardiographic screening. Athletes were grouped according to BSA (Group 1, BSA>2.3 m(2), n=100; Group 2, 2-2.29 m(2), n=244; Group 3, 13 mm, but in combination with an abnormal ECG suspicious of an inherited cardiac disease. CONCLUSION: Regardless of extreme anthropometry, established upper limits for physiological cardiac hypertrophy of 14 mm for maximal wall thickness and 65 mm for LVIDd are clinically appropriate for all athletes. However, the abnormal ECG is key to diagnosis and guides follow-up, particularly when cardiac dimensions are within accepted limits

    Inhibition of TNF receptor p55 by a domain antibody attenuates the initial phase of acid-induced lung injury in mice

    Get PDF
    Background: Tumor necrosis factor-α (TNF) is strongly implicated in the development of acute respiratory distress syndrome (ARDS), but its potential as a therapeutic target has been hampered by its complex biology. TNF signals through two receptors, p55 and p75, which play differential roles in pulmonary edema formation during ARDS. We have recently shown that inhibition of p55 by a novel domain antibody (dAb™) attenuated ventilator36 induced lung injury. In the current study we explored the efficacy of this antibody in mouse models of acid-induced lung injury, to investigate the longer consequences of treatment. Methods: We employed two acid-induced injury models, an acute ventilated model and a resolving spontaneously breathing model. C57BL/6 mice were pretreated intratracheally or intranasally with p55-targeting dAb or non-targeting ‘dummy’ dAb, 1 or 4 hours before acid instillation. Results: Acid instillation in the dummy dAb group caused hypoxemia, increased respiratory system elastance, pulmonary inflammation and edema in both the ventilated and resolving models. Pretreatment with p55-targeting dAb significantly attenuated physiological markers of ARDS in both models. p55-targeting dAb also attenuated pulmonary inflammation in the ventilated model, with signs that altered cytokine production and leukocyte recruitment persisted beyond the very acute phase. Conclusions: These results demonstrate that the p55-targeting dAb attenuates lung injury and edema formation in models of ARDS induced by acid aspiration, with protection from a single dose lasting up to 24 hours. Together with our previous data, the current study lends support towards the clinical targeting of p55 for patients with, or at risk of ARDS

    Capture technique and fish personality: Angling targets timid bluegill sunfish, lepomis macrochirus

    Get PDF
    Size-selective harvesting associated with commercial and recreational fishing practices has been shown to alter life history traits through a phenomenon known as fishing-induced evolution. This phenomenon may be a result of selection pathways targeting life-history traits directly or indirectly through correlations with behavioral traits. Here, we report on the relationship between individual differences in behavior and capture technique (beach seining versus angling) in wild-caught juvenile bluegill sunfish (Lepomis macrochirus). Both fish caught by using a seine net (seined) and fish caught by using a lure (angled) were individually tested under standardized laboratory conditions for their boldness, water-column use, and general activity. Observed inter-individual differences in boldness were strongly correlated with method of capture in the wild. Fish caught by angling were more timid and had fewer ectoparasites than fish caught using a seine net. However, this relationship did not carry over to an experiment in a large outdoor pool with seine-caught, individually tagged wild fish, where bolder individuals were more likely to be angled in open water away from refuges than more timid individuals, based on their previously assessed boldness scores. Our study is both novel and important, as it describes the relationship between capture technique and boldness in a natural population and underscores the potential risk of sampling biases associated with method of animal capture for behavioral, population, and conservation biologists

    ATP redirects cytokine trafficking and promotes novel membrane TNF signaling via microvesicles

    Get PDF
    Cellular stress or injury induces release of endogenous danger signals such as ATP, which plays a central role in activating immune cells. ATP is essential for the release of nonclassically secreted cytokines such as IL-1β but, paradoxically, has been reported to inhibit the release of classically secreted cytokines such as TNF. Here, we reveal that ATP does switch off soluble TNF (17 kDa) release from LPS-treated macrophages, but rather than inhibiting the entire TNF secretion, ATP packages membrane TNF (26 kDa) within microvesicles (MVs). Secretion of membrane TNF within MVs bypasses the conventional endoplasmic reticulum– and Golgi transport–dependent pathway and is mediated by acid sphingomyelinase. These membrane TNF–carrying MVs are biologically more potent than soluble TNF in vivo, producing significant lung inflammation in mice. Thus, ATP critically alters TNF trafficking and secretion from macrophages, inducing novel unconventional membrane TNF signaling via MVs without direct cell-to-cell contact. These data have crucial implications for this key cytokine, particularly when therapeutically targeting TNF in acute inflammatory diseases.—Soni, S., O'Dea, K. P., Tan, Y. Y., Cho, K., Abe, E., Romano, R., Cui, J., Ma, D., Sarathchandra, P., Wilson, M. R., Takata, M. ATP redirects cytokine trafficking and promotes novel membrane TNF signaling via microvesicles. FASEB J. 33, 6442–6455 (2019). www.fasebj.org

    Secreted extracellular cyclophilin a is a novel mediator of ventilator induced lung injury.

    Get PDF
    RATIONALE: Mechanical ventilation is a mainstay of intensive care but contributes to the mortality of patients through ventilator induced lung injury. Extracellular Cyclophilin A is an emerging inflammatory mediator and metalloproteinase inducer, and the gene responsible for its expression has recently been linked to COVID-19 infection. OBJECTIVES: Here we explore the involvement of extracellular Cyclophilin A in the pathophysiology of ventilator-induced lung injury. METHODS: Mice were ventilated with low or high tidal volume for up to 3 hours, with or without blockade of extracellular Cyclophilin A signalling, and lung injury and inflammation were evaluated. Human primary alveolar epithelial cells were exposed to in vitro stretch to explore the cellular source of extracellular Cyclophilin A, and Cyclophilin A levels were measured in bronchoalveolar lavage fluid from acute respiratory distress syndrome patients, to evaluate clinical relevance. MEASUREMENTS AND MAIN RESULTS: High tidal volume ventilation in mice provoked a rapid increase in soluble Cyclophilin A levels in the alveolar space, but not plasma. In vivo ventilation and in vitro stretch experiments indicated alveolar epithelium as the likely major source. In vivo blockade of extracellular Cyclophilin A signalling substantially attenuated physiological dysfunction, macrophage activation and matrix metalloproteinases. Finally, we found that patients with acute respiratory distress syndrome showed markedly elevated levels of extracellular Cyclophilin A within bronchoalveolar lavage. CONCLUSIONS: Cyclophilin A is upregulated within the lungs of injuriously ventilated mice (and critically ill patients), where it plays a significant role in lung injury. Extracellular Cyclophilin A represents an exciting novel target for pharmacological intervention

    Growth dynamics and the evolution of cooperation in microbial populations

    Get PDF
    Microbes providing public goods are widespread in nature despite running the risk of being exploited by free-riders. However, the precise ecological factors supporting cooperation are still puzzling. Following recent experiments, we consider the role of population growth and the repetitive fragmentation of populations into new colonies mimicking simple microbial life-cycles. Individual-based modeling reveals that demographic fluctuations, which lead to a large variance in the composition of colonies, promote cooperation. Biased by population dynamics these fluctuations result in two qualitatively distinct regimes of robust cooperation under repetitive fragmentation into groups. First, if the level of cooperation exceeds a threshold, cooperators will take over the whole population. Second, cooperators can also emerge from a single mutant leading to a robust coexistence between cooperators and free-riders. We find frequency and size of population bottlenecks, and growth dynamics to be the major ecological factors determining the regimes and thereby the evolutionary pathway towards cooperation.Comment: 26 pages, 6 figure
    corecore