43 research outputs found

    Site-specific factors influence the field performance of a Zn-biofortified wheat variety

    Get PDF
    Background: Biofortification of wheat with zinc (Zn) through breeding and agronomy can reduce Zn deficiencies and improve human health. ‘High-Zn’ wheat varieties have been released in India and Pakistan, where wheat is consumed widely as a dietary staple. The aim of this study was to quantify the potential contribution of a ‘high-Zn’ wheat variety (Triticum aestivum L. var. Zincol-2016) and Zn fertilisers to improving dietary Zn supply under field conditions in Pakistan. Methods: Grain Zn concentration of Zincol-2016 and local reference varieties were determined at three sites of contrasting soil Zn status: Faisalabad (Punjab Province; diethylenetriamine pentaacetate- (DTPA-)extractable Zn, 1.31 mg kg-1 soil; gross plot size 13.3 m2; n=4; reference var. Faisalabad-2008), Islamabad (Capital Territory; 0.48 mg kg-1; 4.6 m2; n=5; reference var. NARC-2011), and Pir Sabak (Khyber Pakhtunkhwa, KPK, Province; 0.12 mg kg-1 soil; 9.1 m2; n=4; reference vars. Pirsabak-2015, Wadhan-2017). Eight Zn fertiliser treatment levels were tested using a randomised complete block design: control; soil (5 or 10 kg ha-1 ZnSO4.H2O; 33% Zn applied at sowing); foliar (0.79 or 1.58 kg of ZnSO4.H2O ha-1 applied as a 250 L ha-1 drench at crop booting stage); three soil foliar combinations. Results: At the Faisalabad site, the grain Zn concentration of Zincol-2016 was greater than Faisalabad-2008, with no yield penalty. Zincol-2016 did not have larger grain Zn concentrations than reference varieties used at Islamabad or Pir Sabak sites, which both had a lower soil Zn status than the Faisalabad site. Foliar Zn fertilisation increased grain Zn concentration of all varieties at all sites. There were no significant effects of soil Zn fertilisers, or variety·fertiliser interactions, on grain Zn concentration or yield. Conclusions: Environment and management affect the performance of ‘high-Zn’ wheat varieties, and these factors needs to be evaluated at scale to assess the potential nutritional impact of Zn biofortified crops. Designing studies to detect realistic effect sizes for new varieties and crop management strategies is therefore an important consideration. The current study indicated that nine replicate plots would be needed to achieve 80% power to detect a 25% increase in grain Zn concentration

    Magnesium biofortification of Italian ryegrass (Lolium multiflorum L.) via agronomy and breeding as a potential way to reduce grass tetany in grazing ruminants

    Get PDF
    © 2019, The Author(s). Aim: Magnesium (Mg) deficiency (known as grass tetany) is a serious metabolic disorder that affects grazing ruminants. We tested whether Mg-fertiliser can increase Mg concentration of Italian ryegrasses (Lolium multiflorum L.) including a cultivar (cv. Bb2067; ‘Magnet’), bred to accumulate larger concentrations of Mg. Methods: Under controlled environment (CE) conditions, three cultivars (cv. Bb2067, cv. Bb2068, cv. RvP) were grown in low-nutrient compost at six fertiliser rates (0–1500ÎŒM MgCl2.6H2O). Under field conditions, the three cultivars in the CE condition and cv. Alamo were grown at two sites, and four rates of MgSO4 fertiliser application rates (0–200kgha−1 MgO). Multiple grass cuts were taken over two-years. Results: Grass Mg concentration increased with increasing Mg-fertiliser application rates in all cultivars and conditions. Under field conditions, cv. Bb2067 had 11–73% greater grass Mg concentration and smaller forage tetany index (FTI) than other cultivars across the Mg-fertiliser application rates, sites and cuts. Grass dry matter (DM) yield of cv. Bb2067 was significantly (p < 0.05) smaller than cv. Alamo. The effect of Mg-fertiliser rate on DM yield was not significant (p ≄ 0.05). Conclusions: Biofortification of grass with Mg through breeding and agronomy can improve the forage Mg concentration for grazing ruminants, even in high-growth spring grass conditions when hypomagnesaemia is most prevalent. Response to agronomic biofortification varied with cultivar, Mg-fertiliser rate, site and weather. The cost:benefit of these approaches and farmer acceptability, and the impact on cattle and sheep grazing on grasses biofortified with Mg requires further investigation

    Differences in the nutritional quality of improved finger millet genotypes in Ethiopia

    Get PDF
    Improved crop genotypes are constantly introduced. However, information on their nutritional quality is generally limited. The present study reports the proximate composition and the concentration and relative bioavailability of minerals of improved finger millets of different genotypes. Grains of finger millet genotypes (n = 15) grown in research station during 2019 and 2020 in Ethiopia, and replicated three times in a randomized complete block design, were analysed for proximate composition, mineral concentration (iron, zinc, calcium, selenium), and antinutritional factors (phytate, tannin and oxalate). Moreover, the antinutritional factors to mineral molar ratio method was used to estimate mineral bioavailability. The result shows a significant genotypic variation in protein, fat and fibre level, ranging from 10% to 14.6%, 1.0 to 3.8%, and 1.4 to 4.6%, respectively. Similarly, different finger millets genotypes had significantly different mineral concentrations ranging from 3762 ± 332 to 5893 ± 353mgkg−1 for Ca, 19.9 ± 1.6 to 26.2 ± 2.7mgkg−1 for Zn, 36.3 ± 4.6 to 52.9 ± 9.1mgkg−1 for Fe and 36.6 ± 11 to 60.9 ± 22”gkg−1 for Se. Phytate (308–360”gg−1), tannin (0.15–0.51mgg−1) and oxalate (1.26–4.41mgg−1) concentrations were also influenced by genotype. Antinutritional factors to minerals molar ratio were also significantly different by genotypes but were below the threshold for low mineral bioavailability. Genotype significantly influenced mineral and antinutritional concentrations of finger millet grains. In addition, all finger millet genotypes possess good mineral bioavailability. Especially, the high Ca concentration in finger millet, compared to in other cereals, could play a vital role to combating Ca deficiency. The result suggests the different finger millet genotypes possess good nutrient content and may contribute to the nutrition security of the local people

    Novel sources of variation in grain yield, components and mineral traits identified in wheat amphidiploids derived from thinopyrum bessarabicum (Savul. &amp; rayss) Á. löve (poaceae) under saline soils in India

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Salt-affected soils constrain wheat production globally. A wild wheat species, Thinopyrum bessarabicum (Savul. & Rayss) Á. Löve (Poaceae), and its derivatives are tolerant of high external NaCl concentrations but have not been tested yet in field conditions. The aim of this study was to study the performance of amphidiploids derived from T. bessarabicum for grain yield (GYD), yield components and grain mineral composition traits under normal and saline soil conditions. Field experiments were conducted at Karnal (pH(water) = 7.3) and Hisar (pH(water) = 8.3) sites in 2014–2015 and 2015–2016 in India. Grain samples were analysed using inductively coupled plasma–mass spectrometry (ICP-MS). Yield and yield component traits of amphidiploids were typically greater at Karnal than Hisar. The GYD was greater at Karnal (1.6 t ha−1) than Hisar (1.2 t ha−1) in 2014–2015. However, GYD was greater at Hisar (1.7 t ha−1) than Karnal (1.1 t ha−1) in 2015–2016. Mean grain zinc (Zn) concentration of eight amphidiploids, averaged across sites and years, varied from 36 to 43 mg kg−1. Some amphidiploids derived from T. bessarabicum showed greater GYD and grain Zn concentration under saline soils (Hisar) than normal soils (Karnal). These might be potential new sources for the development of salt-tolerant wheat varieties with increased grain Zn concentration under salt-affected soils

    Agronomic biofortification of cowpea with selenium: effects of selenate and selenite applications on selenium and phytate concentrations in seeds

    Get PDF
    BACKGROUNDSelenium (Se) is a nutrient for animals and humans, and is considered beneficial to higher plants. Selenium concentrations are low in most soils, which can result in a lack of Se in plants, and consequently in human diets. Phytic acid (PA) is the main storage form of phosphorus in seeds, and it is able to form insoluble complexes with essential minerals in the monogastric gut. This study aimed to establish optimal levels of Se application to cowpea, with the aim of increasing Se concentrations. The efficiency of agronomic biofortification was evaluated by the application of seven levels of Se (0, 2.5, 5, 10, 20, 40, and 60 g ha−1) from two sources (selenate and selenite) to the soil under field conditions in 2016 and 2017.RESULTSApplication of Se as selenate led to greater plant Se concentrations than application as selenite in both leaves and grains. Assuming human cowpea consumption of 54.2 g day−1, Se application of 20 g ha−1 in 2016 or 10 g ha−1 in 2017 as selenate would have provided a suitable daily intake of Se (between 20 and 55 ÎŒg day−1) for humans. Phytic acid showed no direct response to Se application.CONCLUSIONSelenate provides greater phytoavailability than selenite. The application of 10 g Se ha−1 of selenate to cowpea plants could provide sufficient seed Se to increase daily human intake by 13–14 Όg d−1. © 2019 Society of Chemical Industr

    Impact of zinc and iron agronomic biofortification on grain mineral concentration of finger millet varieties as affected by location and slope

    Get PDF
    Background: Food crop micronutrient concentrations can be enhanced through agronomic biofortification, with the potential to reduce micronutrient deficiencies among rural population if they have access to fertilizers. Here we reported the impact of agronomic biofortification on finger millet grain zinc (Zn) and iron (Fe) concentration. Methods: A field experiment was conducted in farmers’ fields in Ethiopia in two locations; over two seasons in one district (2019 and 2020), and over a single season (2019) in a second district. The experimental design had 15 treatment combinations comprising 3 finger millet varieties and 5 soil-applied fertilizer treatments: (T1) 20 kg ha−1 FeSO4 + 25 kg ha−1 ZnSO4 + NPKS; (T2) 25 kg ha−1 ZnSO4 + NPKS; (T3) NPKS; (T4) 30% NPKS; (T5) 20 kg ha−1 FeSO4 + NPKS. The treatments were studied at two slope positions (foot and hill), replicated four times in a randomized complete block design. Results: Grain Zn concentration increased by 20% in response to Fe and Zn and by 18.9% due to Zn addition. Similarly, grain Fe concentration increased by 21.4% in T1 and 17.8% in T5 (Fe). Zinc fertilizer application (p < 0.001), finger millet variety (p < 0.001), and an interaction of Fe and Zn had significant effect on grain Zn concentration. Iron fertilizer (p < 0.001) and interactive effect of Fe fertilizer and finger millet variety (p < 0.01) had significant effects on grain Fe concentration. Location but not slope position was a source of variation for both grain Zn and Fe concentrations. Conclusion: Soil application of Zn and Fe could be a viable strategy to enhance grain Zn and Fe concentration to finger millet grain. If increased grain Zn and Fe is bioavailable, it could help to combat micronutrient deficiencies

    Genotypic Response of Finger Millet to Zinc and Iron Agronomic Biofortification, Location and Slope Position Towards Yield

    Get PDF
    The present study aimed to investigate the influence of genotypic differences on responses to zinc and iron agronomic biofortification among yields of finger millet. A field experiment was conducted over two seasons in farmers’ fields in Ethiopia (2019, 2020). The experimental design had 15 treatment combinations comprising three finger millet genotypes and the applications of different combinations of zinc and iron mineral fertilizers. Five soil-applied fertilizer treatments (20 kg h−1 FeSO4 + 25 kg h−1 ZnSO4 + NPKS, 25 kg ha−1 ZnSO4 + NPKS, 20 kg ha−1 FeSO4 + NPKS, NPKS, and 30% NPKS) at two locations (Gojjam and Arsi Negelle, Ethiopia) and using two slope positions (foot and hill) were replicated four times in a randomized complete block design. Grain yield and biomass were evaluated on a plot basis. Plant height, total and productive tiller number, finger length of the longest spike and number of fingers per main ear were measured at the maturity stage. The combined soil application of FeSO47H2O and ZnSO47H2O increased the yield of the Meba genotype by 51.6%. Additionally, ZnSO47H2O fertilizer application increased the yield of the Urji genotype by 27.6%. A yield enhancement of about 18.3% of the Diga-01 genotype was achieved due to the FeSO47H2O fertilizers’ application. The findings of the present study suggest that the influence of Zn and Fe agronomic biofortification on the yield of finger millet could be affected by genotype differences and environmental conditions

    Genotypic Response of Finger Millet to Zinc and Iron Agronomic Biofortification, Location and Slope Position Towards Yield

    Get PDF
    The present study aimed to investigate influence of genotypic differences to zinc and iron agronomic biofortification responses among yield of finger millet. A field experiment was conducted over two seasons in farmers’ fields in Ethiopia (2019, 2020). The experimental design had 15 treatment combinations comprising 3 finger millet varieties and application of different combinations of zinc and iron mineral fertilizers. 5 soil-applied fertilizer treatments (20 kg h-1 FeSO4 + 25 kg h-1 ZnSO4 + NPKS, 25 kg h-1 ZnSO4 + NPKS, 20 kg h-1 FeSO4 + NPKS, NPKS, and 30% NPKS), at 2 locations (Gojjam and Arsi Negelle, Ethiopia), and two 2 slope positions (Foot and hill), replicated four times in a randomized complete block design. Grain yield and biomass were evaluated on plot basis. Plant height, total and productive tiller number, finger length of the longest spike and number of fingers per main ear were measured at maturity stage. The combined soil application of FeSO47H2O and ZnSO47H2O increased yield to Meba variety by 51.6%. Also, ZnSO47H2O fertilizer application increased yield to Urji variety by 27.6%. About 18.3% of yield enhancement of Diga-01 variety was achieved due to the FeSO47H2O fertilizers application. The findings of the present study suggests that the influence of Zn and Fe agronomic biofortification on yield of finger millet could be affected by genotype differences and environmental conditions

    The Impact of Consuming Zinc-Biofortified Wheat Flour on Haematological Indices of Zinc and Iron Status in Adolescent Girls in Rural Pakistan: A Cluster-Randomised, Double-Blind, Controlled Effectiveness Trial

    Get PDF
    Biofortification of wheat is potentially a sustainable strategy to improve zinc intake; however, evidence of its effectiveness is needed. A household-based, double-blind, cluster-randomized controlled trial (RCT) was conducted in rural Pakistan. The primary objective was to examine the effects of consuming zinc-biofortified wheat flour on the zinc status of adolescent girls aged 10–16 years (n = 517). Households received either zinc-biofortified flour or control flour for 25 weeks; blood samples and 24-h dietary recalls were collected for mineral status and zinc intake assessment. Plasma concentrations of zinc (PZC), selenium and copper were measured via inductively coupled plasma mass spectrometry and serum ferritin (SF), transferrin receptor, alpha 1-acid glycoprotein and C-reactive protein by immunoassay. Consumption of the zinc-biofortified flour resulted in a moderate increase in intakes of zinc (1.5 mg/day) and iron (1.2 mg/day). This had no significant effect on PZC (control 641.6 ± 95.3 ”g/L vs. intervention 643.8 ± 106.2 ”g/L; p = 0.455), however there was an overall reduction in the rate of storage iron deficiency (SF < 15 ”g/L; control 11.8% vs. 1.0% intervention). Consumption of zinc-biofortified flour increased zinc intake (21%) but was not associated with an increase in PZC. Establishing a sensitive biomarker of zinc status is an ongoing priority
    corecore